Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhong-Mei Zou is active.

Publication


Featured researches published by Zhong-Mei Zou.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Metabolic pathways involved in Xin-Ke-Shu protecting against myocardial infarction in rats using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

Yue-Tao Liu; Hong-Mei Jia; Xing Chang; Wei-hua Cheng; Xin Zhao; Gang Ding; Hong-Wu Zhang; Da-Yong Cai; Zhong-Mei Zou

Xin-Ke-Shu (XKS) is a patent drug used for coronary heart diseases in China. This study evaluated the protective effect of XKS against isoproterenol (ISO)-induced myocardial infarction (MI). For its underlying mechanism in rats with MI, a metabonomic approach was developed using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS). Plasma metabolites were profiled in MI rats, pretreated orally with or without XKS. Two genres of metabolic biomarkers were used to elucidate the pharmacological action of XKS: pathological biomarkers and pharmaco biomarkers. Fifteen metabolites significantly varying between MI rats and normal rats were characterized as potential pathological biomarkers related to MI, including L-acetylcarnitine (1), L-isoleucyl-L-proline (2), tyramine (3), isobutyryl-L-carnitine (4), phytosphingosine (5), sphinganine (6), L-palmitoylcarnitine (7), lysoPC(18:0) (8), uric acid (9), L-tryptophan (10), lysoPC(18:2) (11), lysoPC(16:0) (12), docosahexaenoic acid (13), arachidonic acid (14) and linoleic acid (15). Among them, eight (1-6, 9 and 10) were first reported as pathological biomarkers related to ISO-induced MI, which mainly involved into fatty acid β-oxidation pathway, sphingolipid metabolism, proteolysis, tryptophan metabolism and purine metabolism. The metabolites significantly varying between MI rats with and without XKS pretreatment were considered as pharmaco biomarkers. A total of 17 pharmaco biomarkers were recognized, including 15 pathological biomarkers (1-15), hexanoylcarnitine (16) and tetradecanoylcarnitine (17). The results suggested that pretreatment of XKS protected metabolic perturbations in rats with MI, major via lipid pathways, amino acid metabolism and purine metabolism, which also provided a promising approach for evaluating the pharmacodynamics and mechanism of traditional Chinese medicines (TCM) formulas.


Journal of Natural Products | 2011

Pestaloquinols A and B, isoprenylated epoxyquinols from Pestalotiopsis sp.

Gang Ding; Fan Zhang; Hong Chen; Liang-Dong Guo; Zhong-Mei Zou; Yongsheng Che

Two new isoprenylated epoxyquinol derivatives, pestaloquinols A (2) and B (3), and their putative biosynthetic precursor, cytosporin D (1), were isolated from the crude extract of the plant endophytic fungus Pestalotiopsis sp. The structures of these compounds were elucidated primarily by NMR experiments. Pestaloquinols A (2) and B (3) possess a previously undescribed nonacyclic ring system and showed cytotoxicity against HeLa cells.


Phytomedicine | 2014

UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model

Yue-Tao Liu; Jing-Bo Peng; Hong-Mei Jia; Da-Yong Cai; Hong-Wu Zhang; Changyuan Yu; Zhong-Mei Zou

Xin-Ke-Shu (XKS), a patent traditional Chinese medicine (TCM) preparation, has been commonly used for the treatment of coronary heart disease in China. In order to understand its mechanism of action, a metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) was utilized to profile the plasma metabolic fingerprints of atherosclerosis (AS) rabbits with and without XKS treatment. The metabolic profile of model group clearly separated from normal, and that of XKS group was closer to the control group. Metabolites with significant changes during atherosclerosis were characterized as potential biomarkers related to the development of atherosclerosis by using orthogonal partial least-squares-discriminate analysis (OPLS-DA). Twenty potential biomarkers, including l-acetylcarnitine (1), propionylcarnitine (2), unknown (3), phytosphingosine (4), glycoursodeoxycholic acid (5), LPC(14:0) (6), sphinganine (7), LPC(20:5) (8), LPC(16:1) (9), LPC(18:2) (10), LPC(18:3) (11), LPC(22:5) (12), LPC(16:0) (13), LPC(18:1) (14), LPC(22:4) (15), LPC(17:0) (16), LPC(20:2) (17), elaidic carnitine (18), LPC(18:0) (19) and LPC(20:1) (20), were identified by their accurate mass and MS(E) spectra. The derivations of those biomarkers can be regulated by administration of XKS, which suggested that the intervention effect of XKS against AS may involve in regulating the lipid perturbation including fatty acid β-oxidation pathway, sphingolipid metabolism, glycerophospholipid metabolism and bile acid biosynthesis. This study indicated that the UPLC-Q/TOF MS-based metabonomics not only gave a systematic view of the pathomechanism of AS, but also provided a powerful tool to study the efficacy and mechanism of complex TCM prescriptions.


Journal of Pharmaceutical and Biomedical Analysis | 2017

Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics

Meng Yu; Hong-Mei Jia; Chao Zhou; Yong Yang; Yang Zhao; Maohua Yang; Zhong-Mei Zou

&NA; As a prevalent, life‐threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota‐gut‐brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high‐performance liquid chromatography‐mass spectrometry (UHPLC–MS) based metabolomics was performed in chronic variable stress (CVS)‐induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC–MS based metabolomics approach can be further applied to assess pathogenesis of depression. Graphical abstract Depression not only perturbs the gut microbiota at abundance level but that it also alters the fecal metabolic phenotype. In addition, there was a strong correlation between gut microbiota and fecal metabolites. Figure. No caption available. HighlightsA combined 16S rRNA gene sequencing and MS‐based metabolomics has been established.Depression led to significant changes of gut microbiota at phylum and genus levels.Depression led to significant changes of fecal metabolic phenotype.Strong correlation of gut microbiota, fecal metabolites, and catecholamine levels.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics

Meng Yu; Feng-Xia Cui; Hong-Mei Jia; Chao Zhou; Yong Yang; Hong-Wu Zhang; Gang Ding; Zhong-Mei Zou

Asthma is a disease characterized by chronic relapsing airways, and its etiology remains incompletely understood. To better understand the metabolic phenotypes of asthma, we investigated a plasma metabolic signature associated with allergic asthma in ovalbumin (OVA)-sensitized mice by using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Sixteen metabolites were characterized as potential pathological biomarkers related to asthma. Among them, 6 (dodecanoic acid (P1), myristic acid (P2), phytosphingosine (P3), sphinganine (P4), inosine (P13) and taurocholic acid (P15)) were first reported to have potential relevance in the pathogenesis of experimental asthma. The identified potential biomarkers were involved in 6 metabolic pathways and achieved the most entire metabolome contributing to the formation of allergic asthma. Purine metabolism was the most prominently influenced in OVA-induced asthma mice according to the metabolic pathway analysis (MetPA), suggesting that significantly changes in inflammatory responses in the pathophysiologic process of asthma. The metabolites of purine metabolism, especially uric acid (P12) and inosine (P13), may denote their potential as targeted biomarkers related to experimental asthma. The decreased plasma uric acid (P12) suggested that inflammation responses of allergic asthma inhibited the activity of xanthine oxidase in purine metabolism, and manifested the severity of asthma exacerbation. The increased level of inosine (P13) suggests that inflammatory cells induce adenosine triphosphate (ATP) breakdown, resulting in excessive expression of adenosine deaminase (ADA) in the formation of allergic asthma. These findings provided a novel perspective on the metabolites signatures related to allergic asthma, which provided us with new insights into the pathogenesis of asthma, and the discovery of targets for clinical diagnosis and treatment.


Journal of Natural Products | 2014

Trichodermone, a spiro-cytochalasan with a tetracyclic nucleus (7/5/6/5) skeleton from the plant endophytic fungus Trichoderma gamsii.

Gang Ding; Hailou Wang; Li Li; Bo Song; Hong Chen; Hongwu Zhang; Xinzhong Liu; Zhong-Mei Zou

Trichodermone (1), the first spiro-cytochalasan with an unprecedented tetracyclic nucleus (7/5/6/5), together with its possible biosynthetic precursor aspochalasin D (2), was isolated from the endophytic fungus Trichoderma gamsii. Compound 2 displayed moderate inhibitory activity against HeLa cells with an IC50 value of 5.72 μM.


Journal of Natural Products | 2011

Gusanlungionosides A-D, potential tyrosinase inhibitors from Arcangelisia gusanlung.

Lingling Yu; Weicheng Hu; Gang Ding; Rong-Tao Li; Jian-He Wei; Zhong-Mei Zou; Myeong-Hyeon Wang

Four new megastigmane glycosides, named gusanlungionosides A-D (1-4), together with 10 known compounds (5-14), were isolated from the stems of Arcangelisia gusanlung. The structures and absolute configurations of 1-4 were elucidated by comprehensive analysis of their NMR and CD data. Compounds 1-4 exhibited strong inhibitory effects not only on the mushroom tyrosinase activity in vitro but also on melanogenesis in cells.


PLOS ONE | 2013

Integration of 1H NMR and UPLC-Q-TOF/MS for a Comprehensive Urinary Metabonomics Study on a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress

Hong-Mei Jia; Yu-fei Feng; Yue-Tao Liu; Xing Chang; Lin Chen; Hong-Wu Zhang; Gang Ding; Zhong-Mei Zou

Depression is a type of complex psychiatric disorder with long-term, recurrent bouts, and its etiology remains largely unknown. Here, an integrated approach utilizing 1H NMR and UPLC-Q-TOF/MS together was firstly used for a comprehensive urinary metabonomics study on chronic unpredictable mild stress (CUMS) treated rats. More than twenty-nine metabolic pathways were disturbed after CUMS treatment and thirty-six potential biomarkers were identified by using two complementary analytical technologies. Among the identified biomarkers, nineteen (10, 11, 16, 17, 21–25, and 27–36) were firstly reported as potential biomarkers of CUMS-induced depression. Obviously, this paper presented a comprehensive map of the metabolic pathways perturbed by CUMS and expanded on the multitude of potential biomarkers that have been previously reported in the CUMS model. Four metabolic pathways, including valine, leucine and isoleucine biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis; tryptophan metabolism; synthesis and degradation of ketone bodies had the deepest influence in the pathophysiologic process of depression. Fifteen potential biomarkers (1–2, 4–6, 15, 18, 20–23, 27, 32, 35–36) involved in the above four metabolic pathways might become the screening criteria in clinical diagnosis and predict the development of depression. Moreover, the results of Western blot analysis of aromatic L-amino acid decarboxylase (DDC) and indoleamine 2, 3-dioxygenase (IDO) in the hippocampus of CUMS-treated rats indicated that depletion of 5-HT and tryptophan, production of 5-MT and altered expression of DDC and IDO together played a key role in the initiation and progression of depression. In addition, none of the potential biomarkers were detected by NMR and LC-MS simultaneously which indicated the complementary of the two kinds of detection technologies. Therefore, the integration of 1H NMR and UPLC-Q-TOF/MS in metabonomics study provided an approach to identify the comprehensive potential depression-related biomarkers and helpful in further understanding the underlying molecular mechanisms of depression through the disturbance of metabolic pathways.


European Journal of Pharmacology | 2016

Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer

Xin Zhao; Qiuting Wang; Shijun Yang; Chen Chen; Xiaoya Li; Jinyu Liu; Zhong-Mei Zou; Da-Yong Cai

Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P<0.01), and sparse microvessel density (P<0.05). Qu significantly inhibited tumor calcineurin activities, and the inhibitory rate was 62.73% in Qu treated animals, compared to that was 72.90% in FK506 group (P>0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), downregulated gene expression of VEGF (P<0.05), VEGFR2 (P<0.05) and NFATc3 (P<0.01), reduced protein levels of VEGF (P<0.05), VEGFR2 (P<0.05), and NFATc3 (P<0.01) in tumor tissues. These findings indicate that Qu inhibit angiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation.


European Journal of Medicinal Chemistry | 2014

Synthesis and evaluation of novel podophyllotoxin derivatives as potential antitumor agents

Wei-Hua Cheng; Bo Cao; Hai Shang; Cong Niu; Li-Ming Zhang; Zhong-Heng Zhang; Dan-Li Tian; Shi Zhang; Hong Chen; Zhong-Mei Zou

Cancer multidrug resistance (MDR) is a common cause of treatment failure in cancer patients. Increased expression of permeability glycoprotein (P-gp), which is also known as MDR-1, is the main cause of multidrug resistance. Podophyllotoxin derivatives hold great promise in the battle to overcome multidrug resistance, as they can induce cytotoxicity through multiple mechanisms. Here, we synthesized sixteen novel podophyllotoxin derivatives and evaluated their cytotoxicities in human cancer cell lines, HeLa, K562 and K562/A02. Some of these compounds were more potent than etoposide, a clinically relevant inhibitor of DNA repair enzymes. In particular, compound 5p exhibited the most potent activity toward drug-resistant K562/A02 cells, as it robustly inhibited tumor cell proliferation and induced apoptosis. Furthermore, preliminary investigation suggested that 5p inhibited the expression of MDR-1 in K562/A02 cells more effectively than etoposide.

Collaboration


Dive into the Zhong-Mei Zou's collaboration.

Top Co-Authors

Avatar

Gang Ding

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hong-Mei Jia

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hong-Wu Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Meng Yu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Li-Zhen Xu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yue-Tao Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Chao Zhou

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Hongwu Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Tao Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Xing Chang

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge