Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongmin Hu is active.

Publication


Featured researches published by Zhongmin Hu.


Global Biogeochemical Cycles | 2012

A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer

Lisa R. Welp; Xuhui Lee; Timothy J. Griffis; Xue Fa Wen; Wei Xiao; Shenggong Li; Xiaomin Sun; Zhongmin Hu; Maria Val Martin; Jianping Huang

Deuterium-excess (d) in water is a combination of the oxygen (delta O-18) and hydrogen (delta D) isotope ratios, and its variability is thought to indicate the location and environmental conditions of the marine moisture source. In this study, we analyze d of water vapor (d(v)) from six sites, all between 37 and 44 degrees N to examine patterns in the atmospheric surface layer and identify the main drivers of variability. Two sites are in urban settings (New Haven, CT, USA and Beijing, China), two sites are in agricultural settings (Rosemount, MN, USA and Luancheng, China), and two sites are in natural ecosystems, a forest (Borden Forest, Ontario, Canada) and a grassland (Duolun, China). We found a robust diurnal cycle in d(v) at all sites with maximum values during mid-day. Isotopic land surface model simulations suggest that plant transpiration is one mechanism underlying the diurnal pattern. An isotopic large-eddy simulation model shows that entrainment of the free atmosphere into the boundary layer can also produce high d(v) values in mid-day. Daily mid-day means of d(v) were negatively correlated with local mid-day relative humidity and positively correlated with planetary boundary layer height at the North American sites, but not the Chinese sites. The mechanism for these differences is still undetermined. These results demonstrate that within the diurnal time scale, d(v) of the surface air at continental locations can be significantly altered by local processes, and is therefore not a conserved tracer of humidity from the marine moisture source region as has previously been assumed.


Oecologia | 2012

Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China

Xuefa Wen; Xuhui Lee; Xiaomin Sun; Jianlin Wang; Zhongmin Hu; Shenggong Li; Guirui Yu

Dew formation has the potential to modulate the spatial and temporal variations of isotopic contents of atmospheric water vapor, oxygen and carbon dioxide. The goal of this paper is to improve our understanding of the isotopic interactions between dew water and ecosystem water pools and fluxes through two field experiments in a wheat/maize cropland and in a short steppe grassland in China. Measurements were made during 94 dew events of the D and 18O compositions of dew, atmospheric vapor, leaf, xylem and soil water, and the whole ecosystem water flux. Our results demonstrate that the equilibrium fractionation played a dominant role over the kinetic fractionation in controlling the dew water isotopic compositions. A significant correlation between the isotopic compositions of leaf water and dew water suggests a large role of top-down exchange with atmospheric vapor controlling the leaf water turnover at night. According to the isotopic labeling, dew water consisted of a downward flux of water vapor from above the canopy (98%) and upward fluxes originated from soil evaporation and transpiration of the leaves in the lower canopy (2%).


Journal of Geophysical Research | 2014

Partitioning of evapotranspiration through oxygen isotopic measurements of water pools and fluxes in a temperate grassland

Zhongmin Hu; Xuefa Wen; Xiaomin Sun; Linghao Li; Guirui Yu; Xuhui Lee; Shenggong Li

Stable isotopic measurements of water provide a promising tool for partitioning of ecosystem evapotranspiration (ET). This approach, however, is still facing some challenges due to the uncertainties in estimating the isotopic compositions of ET and its components. In this study, a tunable diode laser analyzer was deployed for in situ measurements of the oxygen isotopic compositions of water vapor. Using these measurements together with samples of water in plant and soil pools, we partitioned ET via estimating the oxygen isotopic compositions of ET ((ET)) and that of its two components, i.e., plant transpiration ((T)) and soil water evaporation ((E)). A new (T) model was developed in this study, which illustrated consistent estimations with the traditional model. Most of the variables and parameters in the new model can be measured directly with high accuracy, making its potential to be used at other sites high. Our results indicate that the ratio of plant transpiration to evapotranspiration (T/ET) illustrates a U shape diurnal pattern. Mean T/ET at 0630-1830 during the sampling days was 83%. Soil depth of 15 cm is a reasonable depth for soil water sampling for estimating (E) at this site. We also investigated the uncertainties in estimating these three terms and their effects on partitioning. Overall, in terms of partitioning, the uncertainties are relatively small from (T) and (E) but quite large from (ET). Quantifying and improving the precision of (ET) should be a priority in future endeavors of ET partitioning via the stable isotopic approach. Key Points A new model is developed to estimate (T) Fifteen centimeter is a reasonable depth for soil water sampling for estimating (E) The (ET) is the most critical member for partitioning


Frontiers of Earth Science in China | 2014

A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems

Liangxia Zhang; Zhongmin Hu; Jiangwen Fan; Decheng Zhou; Fengpei Tang

The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural ecosystems. In cropland, however, the temporal relationship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles.


Journal of Arid Land | 2016

Responses of gross primary productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia, China

Qun Guo; Shenggong Li; Zhongmin Hu; Wei Zhao; Guirui Yu; Xiaomin Sun; Linghao Li; Naishen Liang; Wenming Bai

Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τR) and the maximum absolute GPP-response (GPPmax) increased linearly with the sizes of precipitation events (Pes), driving a corresponding increase in time-integrated amount of the GPP-response (GPPtotal) because variations of GPPtotal were largely explained by τR and GPPmax. The relative contributions of these two parameters to GPPtotal were strongly Pes-dependent. The GPPmax contributed more to the variations of GPPtotal when Pes was relatively small (<20 mm), whereas τR was the main driver to the variations of GPPtotal when Pes was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.


Advances in Meteorology | 2015

Influence of Land Use Patterns on Evapotranspiration and Its Components in a Temperate Grassland Ecosystem

Yuzhe Li; Jiangwen Fan; Zhongmin Hu; Quanqin Shao; Liangxia Zhang; Hailing Yu

To better understand variation in response of components of ecosystem evapotranspiration (ET) to grassland use differences, we selected three typical land use patterns in a temperate steppe area: grazed steppe (G), steppe with grazers excluded (GE), and steppe cultivated to cropland (C). ET was divided into its components evaporation (E) and canopy transpiration (T) using herbicide and a chamber attached to a portable infrared gas analyzer (Li-6400). The results indicated that daily water consumption by ET in G was 3.30 kg m−2 d−1; compared with G, ET increased significantly in GE at 13.4% and showed a trend of 6.73% increase in C. Daily water consumption by E increased 24.3% in GE relative to G, and C showed 20.2% more than GE. At 0.46, E/ET in C was significantly higher than G at 0.35. Air temperature and the vapor pressure deficit were closely correlated with variation in diurnal ET, E, and T. The leaf area index (LAI) was also positively correlated with daily ET and E varied among grassland use patterns and explained variation in E/ET (81%). Thus, variation in LAI strongly influences the overall magnitude of ecosystem ET and the composition of its components under different grassland use patterns.


Tellus B | 2014

Close relationship between spectral vegetation indices and V-cmax in deciduous and mixed forests

Yanlian Zhou; Weimin Ju; Xiaomin Sun; Zhongmin Hu; Shijie Han; T. Andrew Black; Rachhpal S. Jassal; Xiaocui Wu

Seasonal variations of photosynthetic capacity parameters, notably the maximum carboxylation rate, Vcmax, play an important role in accurate estimation of CO2 assimilation in gas-exchange models. Satellite-derived normalised difference vegetation index (NDVI), enhanced vegetation index (EVI) and model-data fusion can provide means to predict seasonal variation in Vcmax. In this study, Vcmax was obtained from a process-based model inversion, based on an ensemble Kalman filter (EnKF), and gross primary productivity, and sensible and latent heat fluxes measured using eddy covariance technique at two deciduous broadleaf forest sites and a mixed forest site. Optimised Vcmax showed considerable seasonal and inter-annual variations in both mixed and deciduous forest ecosystems. There was noticeable seasonal hysteresis in Vcmax in relation to EVI and NDVI from 8 d composites of satellite data during the growing period. When the growing period was phenologically divided into two phases (increasing VIs and decreasing VIs phases), significant seasonal correlations were found between Vcmax and VIs, mostly showing R2>0.95. Vcmax varied exponentially with increasing VIs during the first phase (increasing VIs), but second and third-order polynomials provided the best fits of Vcmax to VIs in the second phase (decreasing VIs). The relationships between NDVI and EVI with Vcmax were different. Further efforts are needed to investigate Vcmax–VIs relationships at more ecosystem sites to the use of satellite-based VIs for estimating Vcmax.


Rangeland Journal | 2012

Assessment of changes in the state of the rangelands of Inner Mongolia, China between 1998 and 2007 using remotely sensed data

Zhongmin Hu; Shenggong Li; Jinwei Dong; Jiangwen Fan

The spatial annual patterns of aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of the rangelands of the Inner Mongolia Autonomous Region of China, a region in which several projects for ecosystem restoration had been implemented, are described for the years 1998–2007. Remotely sensed normalised difference vegetation index and ANPP data, measured in situ, were integrated to allow the prediction of ANPP and PUE in each 1 km2 of the 12 prefectures of Inner Mongolia. Furthermore, the temporal dynamics of PUE and ANPP residuals, as indicators of ecosystem deterioration and recovery, were investigated for the region and each prefecture. In general, both ANPP and PUE were positively correlated with mean annual precipitation, i.e. ANPP and PUE were higher in wet regions than in arid regions. Both PUE and ANPP residuals indicated that the state of the rangelands of the region were generally improving during the period of 2000–05, but declined by 2007 to that found in 1999. Among the four main grassland-dominated prefectures, the recovery in the state of the grasslands in the Erdos and Chifeng prefectures was highest, and Xilin Gol and Chifeng prefectures was 2 years earlier than Erdos and Hunlu Buir prefectures. The study demonstrated that the use of PUE or ANPP residuals has some limitations and it is proposed that both indices should be used together with relatively long-term datasets in order to maximise the reliability of the assessments.


Scientific Reports | 2017

Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems

Chengming You; Fuzhong Wu; Youmin Gan; Wanqin Yang; Zhongmin Hu; Zhenfeng Xu; Bo Tan; Lin Liu; Xiangyin Ni

Nitrogen (N) deposition has increased globally and has profoundly influenced the structure and function of grasslands. Previous studies have discussed how N addition affects aboveground biomass (AGB), but the effects of N addition on the AGB of different functional groups in grasslands remain unclear. We conducted a meta-analysis to identify the responses of AGB and the AGB of grasses (AGBgrass) and forbs (AGBforb) to N addition across global grasslands. Our results showed that N addition significantly increased AGB and AGBgrass by 31 and 79%, respectively, but had no significant effect on AGBforb. The effects of N addition on AGB and AGBgrass increased with increasing N addition rates, but which on AGBforb decreased. Although study durations did not regulate the response ratio of N addition for AGB, which for AGBgrass increased and for AGBforb decreased with increasing study durations. Furthermore, the N addition response ratios for AGB and AGBgrass increased more strongly when the mean annual precipitation (MAP) was 300–600 mm but decreased with an increase in the mean annual temperature (MAT). AGBforb was only slightly affected by MAP and MAT. Our findings suggest that an acceleration of N deposition will increase grassland AGB by altering species composition.


Journal of Geographical Sciences | 2017

Spatial pattern of grassland aboveground biomass and its environmental controls in the Eurasian steppe

Cuicui Jiao; Guirui Yu; Nianpeng He; Anna Ma; Jianping Ge; Zhongmin Hu

Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwide, playing an important role in global carbon cycling. Therefore, studying spatial patterns of biomass and their correlations to environment in grasslands is fundamental to quantifying terrestrial carbon budgets. The Eurasian steppe, an important part of global grasslands, is the largest and relatively well preserved grassland in the world. In this study, we analyzed the spatial pattern of aboveground biomass (AGB), and correlations of AGB to its environment in the Eurasian steppe by meta-analysis. AGB data used in this study were derived from the harvesting method and were obtained from three data sources (literature, global NPP database at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL), some data provided by other researchers). Our results demonstrated that: (1) as for the Eurasian steppe overall, the spatial variation in AGB exhibited significant horizontal and vertical zonality. In detail, AGB showed an inverted parabola curve with the latitude and with the elevation, while a parabola curve with the longitude. In addition, the spatial pattern of AGB had marked horizontal zonality in the Black Sea-Kazakhstan steppe subregion and the Mongolian Plateau steppe subregion, while horizontal and vertical zonality in the Tibetan Plateau alpine steppe subregion. (2) Of the examined environmental variables, the spatial variation of AGB was related to mean annual precipitation (MAP), mean annual temperature (MAT), mean annual solar radiation (MAR), soil Gravel content, soil pH and soil organic content (SOC) at the depth of 0–30 cm. Nevertheless, MAP dominated spatial patterns of AGB in the Eurasian steppe and its three subregions. (3) A Gaussian function was found between AGB and MAP in the Eurasian steppe overall, which was primarily determined by unique patterns of grasslands and environment in the Tibetan Plateau. AGB was significantly positively related to MAP in the Black Sea-Kazakhstan steppe subregion (elevation < 3000 m), the Mongolian Plateau steppe subregion (elevation < 3000 m) and the surface (elevation ≥ 4800 m) of the Tibetan Plateau. Nevertheless, the spatial variation in AGB exhibited a Gaussian function curve with the increasing MAP in the east and southeast margins (elevation < 4800 m) of the Tibetan Plateau. This study provided more knowledge of spatial patterns of AGB and their environmental controls in grasslands than previous studies only conducted in local regions like the Inner Mongolian temperate grassland, the Tibetan Plateau alpine grassland, etc.

Collaboration


Dive into the Zhongmin Hu's collaboration.

Top Co-Authors

Avatar

Guirui Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shenggong Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaomin Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiangwen Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qun Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liangxia Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianjin Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yingnian Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huaping Zhong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Leiming Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge