Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhongyang Luo is active.

Publication


Featured researches published by Zhongyang Luo.


Journal of Hazardous Materials | 2010

The activity and characterization of CeO2-TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3

Xiang Gao; Ye Jiang; Yi Zhong; Zhongyang Luo; Kefa Cen

A series of Ce-Ti mixed-oxide catalysts were prepared by the sol-gel method for selective catalytic reduction (SCR) of NO with ammonia as reductant. These catalysts were characterized by XRD, BET, and XPS techniques. The experimental results show that the best Ce-Ti mixed-oxide catalyst yielded 98.6% NO conversion, and 100% N(2) selectivity at typical SCR reaction temperatures (300-400 degrees C) and the high gas hourly space velocity of 50,000 h(-1). As the Ce loading (the mass ratio of CeO(2)/TiO(2)) was increased from 0 to 0.6, NO conversion increased markedly, but decreased at higher Ce loading. The most active catalyst was obtained with a Ce loading of 0.6. The high activity might be attributed to high Ce loading, strong interaction between Ce and Ti, high concentration of amorphous Ce on the catalyst surface, or the increase of chemisorbed oxygen or/and weakly bonded oxygen species, resulting from the presence of Ce(3+) after Ce addition. The effect of the calcination temperature was also investigated, and the optimal calcination temperature was 500 degrees C. The presence of oxygen played an essential role in NO reduction, and the activity of the Ce(0.6)Ti catalyst was not depressed when oxygen concentration was higher than 1%. The effect of SO(2) and H(2)O on the activity of the Ce(0.6)Ti catalyst was bound up with the reaction temperature.


Biotechnology Advances | 2009

Comparison of the pyrolysis behavior of lignins from different tree species

Shurong Wang; Kaige Wang; Qian Liu; Yueling Gu; Zhongyang Luo; Kefa Cen; Torsten Fransson

Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.


Energy Conversion and Management | 2003

Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

G. Chen; J. Andries; Zhongyang Luo; H. Spliethoff

The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate. of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 WJ/N m(3).


Bioresource Technology | 2012

Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies

Shurong Wang; Xiujuan Guo; Tao Liang; Yan Zhou; Zhongyang Luo

The mechanism of fast pyrolysis of cellulose has been studied by using an analytical pyrolyzer coupled with a gas chromatography-mass spectrometry set-up (Py-GC/MS). The results showed that the main products comprised pyrans such as levoglucosan and levoglucosenone, furans such as furfural and 5-hydroxymethyl furfural, and linear small molecular chemicals such as acetaldehyde and 1-hydroxy-2-propanone. The compositions of products from fast pyrolysis of cellubiose and glucose were similar to that from cellulose, but with higher furan contents and lower pyran contents. Based on the experimental results, density functional theory (DFT) studies were carried out to deduce the pyrolysis mechanism of cellulose. The results showed the formation of 5-hydroxymethyl furfural from d-glucopyranose unit to be easier than the formation of levoglucosan, in agreement with the experimental results. The deduced mechanism of reaction pathways in cellulose pyrolysis provides insight into the pyrolysis behavior of cellulose and allows modification of previously proposed related mechanisms.


Bioresource Technology | 2015

Pyrolysis behaviors of four lignin polymers isolated from the same pine wood

Shurong Wang; Bin Ru; Haizhou Lin; Wuxing Sun; Zhongyang Luo

Four lignin polymers, alkali lignin (AL), klason lignin (KL), organosolv lignin (OL), and milled wood lignin (MWL), were isolated from the same pine wood. Structural characterization by FTIR and (13)C NMR indicated that the four lignins have different structural features. Their pyrolysis behaviors were analyzed by TG-FTIR and Py-GC/MS. Thermally unstable ether bonds and side branches were well-preserved in AL and MWL, but were broken in OL and KL. Pyrolysis of AL and KL produce more phenols at low temperature by the breakage of ether bonds. AL and KL show lower activation energies in the main degradation stage, quantified by a distribution activation energy model with two linearly combined Gaussian functions. The evolution behaviors of typical gaseous products, CH4, CO2, and CO, were analyzed, and insights about the correlation between chemical structure and pyrolysis behavior were obtained.


Bioresource Technology | 2013

Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts.

Jixiang Zhang; Wan Ting Chen; Peng Zhang; Zhongyang Luo; Yuanhui Zhang

Hydrothermal liquefaction (HTL) of low lipid content microalgae Chlorella pyrenoidosa with heterogeneous catalysts was processed under sub- and supercritical conditions of ethanol (200-300°C, 2.8-9.0 MPa, 30 min). The HTL products were separated into bio-crude, gas, solid residue and volatile components, and then characterized. The highest mass and energy recovery ratios of bio-crude on the dry basis of alga were 71.3% and 101.8% respectively, obtained at 240°C, while the highest higher heating value of bio-crude was 36.19 MJ/kg, obtained at 300°C. Temperature was found to be the most dominant parameter. H2 as a processing gas at an initial pressure of 1.03 MPa slightly improved the bio-crude yield and quality. Raney-Ni and HZSM-5 type zeolite catalysts had no significant effect on the presented HTL process. The results indicated that HTL with ethanol as the solvent was able to produce 50-70 wt.% of bio-crude directly from C. pyrenoidosa.


Environmental Science & Technology | 2013

CeO2–TiO2 Sorbents for the Removal of Elemental Mercury from Syngas

Jinsong Zhou; Wenhui Hou; Pan Qi; Xiang Gao; Zhongyang Luo; Kefa Cen

A series of CeO2-TiO2 (CeTi) sorbents with different CeO2/TiO2 mass ratios were prepared by an impregnation method and employed to remove elemental mercury (Hg(0)) in simulated syngas. The CeTi sorbents with a CeO2/TiO2 mass ratio of 0.2 exhibited superior Hg(0) removal efficiency from 80 to 150 °C, which could be ascribed to the greater amount of surface chemisorbed oxygen resulted from Ce(3+) on the sample surface. H2S was the most effective syngas component responsible for Hg(0) removal. The use of 400 ppm H2S resulted in 98% Hg(0) removal efficiency under the experimental conditions. H2 and CO had a negligible effect on the efficiency of Hg removal. In the presence of H2S, a prohibitive effect of HCl and NH3 on Hg(0) removal was observed because of the consumption of the surface oxygen. Water vapor also inhibited Hg(0) removal due to competitive adsorption with H2S. Hg(0) removal over CeTi sorbents was proposed to follow the Eley-Rideal mechanism, in which active surface sulfur reacts with gas-phase Hg(0). This large oxygen storage capacity of CeTi sorbents is quite favorable to H2S catalytic oxidation and Hg(0) emission control in an extremely reducing environment, such as when there is a deficiency of O2.


Bioresource Technology | 2013

Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles

Shurong Wang; Bin Ru; Haizhou Lin; Zhongyang Luo

Xylan and three monosaccharides (mannose, galactose, and arabinose) were selected as model compounds to investigate the mechanism of hemicellulose pyrolysis. The evolution of several typical pyrolysis products were observed by thermogravimetric analysis coupled to Fourier transform infrared spectroscopy. Monosaccharides underwent similar pyrolysis routes involving ring opening and secondary decomposition. Breakage of the O-acetyl groups and 4-O-methylglucuronic acid units in xylan branches resulted in its different pyrolysis behavior for the formation of acetic acid, CO2, and CO. The detailed reaction pathways of the monosaccharides were studied using density functional theory calculations. Furfural formation was more favorable than the formation of 1-hydroxy-2-propanone and 4-hydroxydihydrofuran-2(3H)-one during xylose degradation. However, in the pyrolysis of mannose and galactose, formation of 5-hydroxymethyl-2-furaldehyde was preferred because of the high energy barrier of the dissociation of the hydroxymethyl group. Meanwhile, the breakage of O-acetyl groups leading to acetic acid formation easily occurred because of its lower energy barrier.


Journal of Hazardous Materials | 2011

Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO.

Xiang Gao; Shaojun Liu; Yang Zhang; Zhongyang Luo; Kefa Cen

Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N(2) adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO(2) and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO(2) removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH(3), which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO(2) and NO removal, just like V and Cu.


Chinese Journal of Chemical Engineering | 2011

Properties of Bio-oil from Fast Pyrolysis of Rice Husk

Xiujuan Guo; Shurong Wang; Qi Wang; Zuogang Guo; Zhongyang Luo

Abstract Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work. Molecular distillation was used to separate the crude bio-oil into three fractions viz . light fraction, middle fraction and heavy fraction. Their chemical composition was analyzed by gas chromatograph and mass spectrometer (GC-MS). The thermal behavior, including evaporation and decomposition, was investigated using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR). The product distribution was significantly affected by contents of cellulose, hemicellulose and lignin. The bio-oil yield was 46.36% (by mass) and the yield of gaseous products was 27% (by mass). The chemicals in the bio-oil included acids, aldehydes, ketones, alcohols, phenols, sugars, etc . The light fraction was mainly composed of acids and compounds with lower boiling point temperature, the middle and heavy fractions were consisted of phenols and levoglucosan. The thermal stability of the bio-oil was determined by the interactions and intersolubility of compounds. It was found that the thermal stability of bio-oil was better than the light fraction, but worse than the middle and heavy fractions.

Collaboration


Dive into the Zhongyang Luo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge