Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zia Khan is active.

Publication


Featured researches published by Zia Khan.


Nature Medicine | 2011

Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization

Manav Korpal; Brian Ell; Francesca M. Buffa; Toni Ibrahim; Mario Andres Blanco; Toni Celià-Terrassa; Laura Mercatali; Zia Khan; Hani Goodarzi; Yuling Hua; Yong Wei; Guohong Hu; Benjamin A. Garcia; Jiannis Ragoussis; Dino Amadori; Adrian L. Harris; Yibin Kang

Although the role of miR-200s in regulating E-cadherin expression and epithelial-to-mesenchymal transition is well established, their influence on metastatic colonization remains controversial. Here we have used clinical and experimental models of breast cancer metastasis to discover a pro-metastatic role of miR-200s that goes beyond their regulation of E-cadherin and epithelial phenotype. Overexpression of miR-200s is associated with increased risk of metastasis in breast cancer and promotes metastatic colonization in mouse models, phenotypes that cannot be recapitulated by E-cadherin expression alone. Genomic and proteomic analyses revealed global shifts in gene expression upon miR-200 overexpression toward that of highly metastatic cells. miR-200s promote metastatic colonization partly through direct targeting of Sec23a, which mediates secretion of metastasis-suppressive proteins, including Igfbp4 and Tinagl1, as validated by functional and clinical correlation studies. Overall, these findings suggest a pleiotropic role of miR-200s in promoting metastatic colonization by influencing E-cadherin–dependent epithelial traits and Sec23a-mediated tumor cell secretome.


BMC Genomics | 2009

Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays

Joshua S. Bloom; Zia Khan; Mona Singh; Amy A. Caudy

BackgroundHigh-throughput cDNA synthesis and sequencing of poly(A)-enriched RNA is rapidly emerging as a technology competing to replace microarrays as a quantitative platform for measuring gene expression.ResultsConsequently, we compared full length cDNA sequencing to 2-channel gene expression microarrays in the context of measuring differential gene expression. Because of its comparable cost to a gene expression microarray, our study focused on the data obtainable from a single lane of an Illumina 1 G sequencer. We compared sequencing data to a highly replicated microarray experiment profiling two divergent strains of S. cerevisiae.ConclusionUsing a large number of quantitative PCR (qPCR) assays, more than previous studies, we found that neither technology is decisively better at measuring differential gene expression. Further, we report sequencing results from a diploid hybrid of two strains of S. cerevisiae that indicate full length cDNA sequencing can discover heterozygosity and measure quantitative allele-specific expression simultaneously.


Science | 2015

Impact of regulatory variation from RNA to protein

Alexis Battle; Zia Khan; Sidney H. Wang; Amy Mitrano; Michael J. Ford; Jonathan K. Pritchard; Yoav Gilad

How genetics affect phenotypic variation How an individual looks depends on their genes, genetic variation, and interactions with the environment. However, the path from genotype to phenotype remains murky. Battle et al. examine how an individuals genetic variation affects expression of RNA, ribosome occupancy, and protein levels. They find that RNA expression and ribosome occupancy are generally correlated. However, in contrast, protein levels appear not to depend on RNA levels or ribosome occupancy. Protein levels are thus regulated by posttranscriptional mechanisms. Science, this issue p. 664 Expression quantitative trait loci affect RNA and protein levels differently in human lymphoblastoid cells. The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably due to their effects on protein expression levels. Yet the impact of genetic variation, including eQTLs, on protein levels remains poorly understood. To address this, we mapped genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or protein abundance (pQTLs). We found that most QTLs are associated with transcript expression levels, with consequent effects on ribosome and protein levels. However, eQTLs tend to have significantly reduced effect sizes on protein levels, which suggests that their potential impact on downstream phenotypes is often attenuated or buffered. Additionally, we identified a class of cis QTLs that affect protein abundance with little or no effect on messenger RNA or ribosome levels, which suggests that they may arise from differences in posttranslational regulation.


Nature | 2012

Differential positioning of adherens junctions is associated with initiation of epithelial folding.

Yu-Chiun Wang; Zia Khan; Matthias Kaschube; Eric Wieschaus

During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical–basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.


Cell Research | 2012

Global secretome analysis identifies novel mediators of bone metastasis

Mario Andres Blanco; Gary LeRoy; Zia Khan; Maša Alečković; Barry M. Zee; Benjamin A. Garcia; Yibin Kang

Bone is the one of the most common sites of distant metastasis of solid tumors. Secreted proteins are known to influence pathological interactions between metastatic cancer cells and the bone stroma. To comprehensively profile secreted proteins associated with bone metastasis, we used quantitative and non-quantitative mass spectrometry to globally analyze the secretomes of nine cell lines of varying bone metastatic ability from multiple species and cancer types. By comparing the secretomes of parental cells and their bone metastatic derivatives, we identified the secreted proteins that were uniquely associated with bone metastasis in these cell lines. We then incorporated bioinformatic analyses of large clinical metastasis datasets to obtain a list of candidate novel bone metastasis proteins of several functional classes that were strongly associated with both clinical and experimental bone metastasis. Functional validation of selected proteins indicated that in vivo bone metastasis can be promoted by high expression of (1) the salivary cystatins CST1, CST2, and CST4; (2) the plasminogen activators PLAT and PLAU; or (3) the collagen functionality proteins PLOD2 and COL6A1. Overall, our study has uncovered several new secreted mediators of bone metastasis and therefore demonstrated that secretome analysis is a powerful method for identification of novel biomarkers and candidate therapeutic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2012

BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection.

Song Hee Lee; Robert F. Kalejta; Julie A. Kerry; Oliver J. Semmes; Christine M. O'Connor; Zia Khan; Benjamin A. Garcia; Thomas Shenk; Eain Murphy

Cell proteins can restrict the replication of viruses. Here, we identify the cellular BclAF1 protein as a human cytomegalovirus restriction factor and describe two independent mechanisms the virus uses to decrease its steady-state levels. Immediately following infection, the viral pp71 and UL35 proteins, which are delivered to cells within virions, direct the proteasomal degradation of BclAF1. Although BclAF1 reaccumulates through the middle stages of infection, it is subsequently down-regulated at late times by miR-UL112-1, a virus-encoded microRNA. In the absence of BclAF1 neutralization, viral gene expression and replication are inhibited. These data identify two temporally and mechanistically distinct functions used by human cytomegalovirus to down-regulate a cellular antiviral protein.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Protein quantification across hundreds of experimental conditions

Zia Khan; Joshua S. Bloom; Benjamin A. Garcia; Mona Singh

Quantitative studies of protein abundance rarely span more than a small number of experimental conditions and replicates. In contrast, quantitative studies of transcript abundance often span hundreds of experimental conditions and replicates. This situation exists, in part, because extracting quantitative data from large proteomics datasets is significantly more difficult than reading quantitative data from a gene expression microarray. To address this problem, we introduce two algorithmic advances in the processing of quantitative proteomics data. First, we use space-partitioning data structures to handle the large size of these datasets. Second, we introduce techniques that combine graph-theoretic algorithms with space-partitioning data structures to collect relative protein abundance data across hundreds of experimental conditions and replicates. We validate these algorithmic techniques by analyzing several datasets and computing both internal and external measures of quantification accuracy. We demonstrate the scalability of these techniques by applying them to a large dataset that comprises a total of 472 experimental conditions and replicates.


Nature Cell Biology | 2012

Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size

Kevin S. Nelson; Zia Khan; Imre Molnár; József Mihály; Matthias Kaschube; Greg J. Beitel

Networks of epithelial and endothelial tubes are essential for the function of organs such as the lung, kidney and vascular system. The sizes and shapes of these tubes are highly regulated to match their individual functions. Defects in tube size can cause debilitating diseases such as polycystic kidney disease and ischaemia. It is therefore critical to understand how tube dimensions are regulated. Here we identify the tyrosine kinase Src as an instructive regulator of epithelial-tube length in the Drosophila tracheal system. Loss-of-function Src42 mutations shorten tracheal tubes, whereas Src42 overexpression elongates them. Surprisingly, Src42 acts distinctly from known tube-size pathways and regulates both the amount of apical surface growth and, with the conserved formin dDaam, the direction of growth. Quantitative three-dimensional image analysis reveals that Src42- and dDaam-mutant tracheal cells expand more in the circumferential than the axial dimension, resulting in tubes that are shorter in length—but larger in diameter—than wild-type tubes. Thus, Src42 and dDaam control tube dimensions by regulating the direction of anisotropic growth, a mechanism that has not previously been described.


Molecular Systems Biology | 2012

Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-MS

Zia Khan; Joshua S. Bloom; Sasan Amini; Mona Singh; David H. Perlman; Amy A. Caudy

Understanding the genetic basis of gene regulatory variation is a key goal of evolutionary and medical genetics. Regulatory variation can act in an allele‐specific manner (cis‐acting) or it can affect both alleles of a gene (trans‐acting). Differential allele‐specific expression (ASE), in which the expression of one allele differs from another in a diploid, implies the presence of cis‐acting regulatory variation. While microarrays and high‐throughput sequencing have enabled genome‐wide measurements of transcriptional ASE, methods for measurement of protein ASE (pASE) have lagged far behind. We describe a flexible, accurate, and scalable strategy for measurement of pASE by liquid chromatography‐coupled mass spectrometry (LC‐MS). We apply this approach to a hybrid between the yeast species Saccharomyces cerevisiae and Saccharomyces bayanus. Our results provide the first analysis of the relative contribution of cis‐acting and trans‐acting regulatory differences to protein expression divergence between yeast species.


Developmental Cell | 2013

Distinct Rap1 Activity States Control the Extent of Epithelial Invagination via α-Catenin

Yu-Chiun Wang; Zia Khan; Eric Wieschaus

Localized cell shape change initiates epithelial folding, while neighboring cell invagination determines the final depth of an epithelial fold. The mechanism that controls the extent of invagination remains unknown. During Drosophila gastrulation, a higher number of cells undergo invagination to form the deep posterior dorsal fold, whereas far fewer cells become incorporated into the initially very similar anterior dorsal fold. We find that a decrease in α-catenin activity causes the anterior fold to invaginate as extensively as the posterior fold. In contrast, constitutive activation of the small GTPase Rap1 restricts invagination of both dorsal folds in an α-catenin-dependent manner. Rap1 activity appears spatially modulated by Rapgap1, whose expression levels are high in the cells that flank the posterior fold but low in the anterior fold. We propose a model whereby distinct activity states of Rap1 modulate α-catenin-dependent coupling between junctions and actin to control the extent of epithelial invagination.

Collaboration


Dive into the Zia Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge