Zichang Li
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zichang Li.
Transportation Research Record | 2013
Zichang Li; Julie M. Vandenbossche
Bonded whitetopping is a thin concrete overlay on a distressed asphalt pavement. The existing design procedures for bonded whitetopping assume the failure mode is a function of the overlay thickness. It has been traditionally assumed that the failure mode for thin whitetopping [overlay thickness greater than 102 mm (4 in.) but less than 152 mm (6 in.)] is transverse cracking, and the failure mode for ultrathin white-topping [overlay thickness between 51 mm (2 in.) and 102 mm (4 in.)] is corner cracking. However, the performance of in-service whitetopping overlays indicates that the actual failure mode is dictated more by slab size than by overlay thickness. For both thin and ultrathin whitetopping with 1.8-m (6-ft) joint spacing, cracks initiate at the bottom of the overlay at the intersection of the transverse joint and the wheelpath and propagate longitudinally. At times, these cracks will continue to propagate in the longitudinal direction and intersect the adjacent transverse joint; at other times, they will turn on a diagonal and propagate toward the lane–shoulder joint. To verify this failure mechanism observed in the field further, a three-dimensional finite element model subjected to environmental and wheel loads was developed. The results support the proposed failure mode, showing that the critical tensile stress is indeed in the wheelpath and at the bottom of the portland cement concrete overlay. This type of failure results in a longitudinal crack.
Spe Drilling & Completion | 2016
Zichang Li; Julie M. Vandenbossche; Anthony T. Iannacchione; John C. Brigham; Barbara Kutchko
Gases can migrate into the cemented annulus of a wellbore during early gelation when hydrostatic pressure within the cement slurry drops. Different means to describe hydrostatic-pressure reduction have been proposed and reported in the literature. Among them, static gel strength (SGS) is the most widely accepted concept in describing the strength development of hydrating cement. The classic shear-stress theory uses SGS to quantify the hydrostaticpressure reduction in the cement column. Approaches derived from the concept of SGS have contributed to understanding mechanisms of gas migration and methods of minimizing it. Unfortunately, these approaches do not accurately predict gas migration. Although SGS was originally adopted to describe the shear stress at interfaces, it has also been used to estimate the shear resistance required to deform slurry during the hydration period. Before early gelation, the hydrostatic pressure will overcome the formation gas pressure and prevent gas migrations. During gelation, the cement develops enough rigidity to withstand the gas invasion. This critical hydration period is defined as the transition time. API STD 65-2 (API 2010a) provides standards for determining the transition time by use of the concept of SGS. Current industry practice is to reduce the transition time, thereby lowering the potential for invading gas introducing migration pathways in the cemented annulus. This approach, although certainly helpful in reducing the risk for gas migration, does not eliminate its occurrence. Experimental results presented in this study demonstrate that the relationship between SGS and hydrostatic-pressure reduction is not linear. Characteristics of the transition-time endpoints depend on slurry properties and downhole conditions. Moreover, SGS is not able to characterize the gas-tight property of a cement slurry. When slurry gels, the mechanical properties are governed by its growing solid fraction. The gel can deform under shear loading, but gases and other fluids will need to break or fracture the bond between solids and push them aside for pathways to form within the cement/matrix domain at this point. To fully understand this process, the bond strength between solid particles and the compressibility of the cement matrix are needed. The bond strength and compressibility are mechanical properties dependent on the changing rigidity of the gelling cement. However, SGS does not address these important properties and, therefore, SGS is limited in its ability to predict gas-migration potential. A better means to characterize the cement/matrix strength by use of fundamental concepts and variables for replacing SGS is desired.
International Journal of Pavement Engineering | 2017
Julie M. Vandenbossche; Nicole Dufalla; Zichang Li
Abstract Bonded concrete overlays of asphalt pavements (BCOAs) are becoming a common rehabilitation technique used for distressed hot mix asphalt (HMA) roadways. The original design procedures were based primarily on data from instrumented pavements and finite element modelling. They were governed by the assumption that the failure mechanism was a function of the overlay thickness. However, field observations have indicated that the actual failure modes are dictated by slab size. The newly developed Bonded Concrete Overlay of Asphalt Mechanistic-Empirical design procedure (BCOA-ME) presented here is valid for overlays that are between 2.5 and 6.5 in (64–154 mm), and includes five primary enhancements to the Portland Cement Association and Colorado Department of Transportation procedures that have been traditionally used: 1.) the failure mode is dictated by the joint spacing; 2.) a new structural model for longitudinal cracking for 6-ft × 6-ft (1.8 m × 1.8 m) concrete overlays has been developed to better predict the critical stresses; 3.) the stress adjustment factors have been calibrated with performance data; 4.) the equivalent temperature gradients used as design input are defined based on the pavement structure and geographical location of the project; and 5.) the effect of temperature change on underlying HMA stiffness is considered. Finally, validation studies were completed on the new procedure and comparisons made between the revised procedure and actual performance data for five separate projects showed reasonable results. A sensitivity analysis also revealed that the predicted thickness obtained using the revised procedure was sensitive to HMA thickness, the modulus of rupture of the Portland cement concrete, and the level of traffic, as would be expected.
Transportation Research Record | 2013
Julie M. Vandenbossche; Nicole Dufalla; Zichang Li
Development of design procedures for bonded whitetopping overlays has been based on the assumption that failure mechanisms are a function of overlay thickness; namely, thin whitetopping results in longitudinal cracking and ultrathin whitetopping results in corner cracking. However, field data from whitetopping sections indicate that failure modes are dictated by slab size rather than overlay thickness. The revised procedure presented here for thin whitetopping and ultrathin whitetopping offers four primary enhancements to the Portland Cement Association and Colorado Department of Transportation procedures that traditionally have been used: (a) the failure mode is dictated by the joint spacing and not the overlay thickness, (b) the stress adjustments factors have been calibrated with an extensive data set, (c) the equivalent gradients to be used as the design input are defined according to the pavement structure and geographical location of the project and, (d) the effect of temperature change on hot-mix asphalt stiffness is considered. Comparisons of the predicted performance for the revised procedure with the actual performance for four separate projects showed that the predicted thicknesses are reasonable. It was also found that the predicted thickness obtained with the revised procedure was sensitive to the thickness of hot-mix asphalt, the level of traffic, and the modulus of rupture of the portland cement concrete, as expected.
Journal of Transportation Engineering-asce | 2016
Steven Sachs; Julie M. Vandenbossche; Zichang Li; Manik Barman
AbstractA bonded concrete overlay of asphalt (BCOA), also known as whitetopping, is a thin concrete overlay placed upon a distressed asphalt pavement. The asphalt-resilient modulus is kept constant in current BCOA design procedures. This practice results in an underestimation of the damage as compared to when the hourly temperature variation of the asphalt is considered. The framework to establish an equivalent asphalt modulus involves generating a database of hourly middepth asphalt temperatures. This database should include hourly temperatures for different BCOA structures and a large range of geographical locations representing different climatic conditions. The hourly middepth asphalt temperatures are then used to generate hourly asphalt moduli using master curves. Through fatigue equivalency, the equivalent asphalt moduli are calculated for each month. In order to establish the relationship between the asphalt modulus and middepth temperature, the United States was divided into seven different zones ...
Transportation Research Record | 2015
Manik Barman; Julie M. Vandenbossche; Zichang Li
A bonded concrete overlay on asphalt (BCOA) is a rehabilitation method for moderately distressed asphalt pavements by relatively thin plain cement concrete or fiber-reinforced concrete slabs. The joint load transfer behavior for BCOAs plays a significant role in the long-term performance. Poor load transfer across the joints of the concrete slabs initiates debonding of the asphalt layer from the concrete slabs, which promotes the development of corner cracks or longitudinal cracks. However, because of the tediousness involved in characterizing the joint load transfer behavior of BCOAs, this important aspect is not accounted for in many available mechanistic–empirical BCOA design procedures. The influences of joint load transfer behavior on the performance of BCOA are discussed. The joint load transfer behavior for BCOAs with 1.52- × 1.83-m (5- × 6-ft) slabs and 1.22- × 1.22-m (4- × 4-ft) slabs is analyzed with the finite element method. The load transfer contributed by the asphalt layer, as well as the concrete slab, is characterized as a function of the BCOA design features. Finally, a method is proposed to determine the nondimensional joint stiffness (AGG*) for BCOAs as a function of the structural design features of the pavement section. The AGG* is significant in that it is the factor commonly used to characterize joint load transfer behavior when pavements are designed with a mechanistic-based design approach.
Journal of Transportation Engineering, Part B: Pavements | 2017
Manik Barman; Julie M. Vandenbossche; Zichang Li
AbstractBonded concrete overlays on asphalt pavement (BCOA) offer a rehabilitation method for moderately distressed asphalt pavements. A performance review of the BCOA projects constructed in diffe...
SPE Eastern Regional Meeting | 2015
Matthew Grasinger; Zichang Li; Alex Vuotto; John C. Brigham; Anthony T. Iannacchione; Julie M. Vandenbossche
Spe Drilling & Completion | 2018
Zichang Li; Julie M. Vandenbossche; Donald J Janssen; Anthony T. Iannacchione
Journal of Transportation Engineering, Part B: Pavements | 2017
Zichang Li; Julie M. Vandenbossche; Nicole Dufalla