Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zipeng Zhao is active.

Publication


Featured researches published by Zipeng Zhao.


Science | 2015

High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction

Xiaoqing Huang; Zipeng Zhao; Liang Cao; Y. Chen; Enbo Zhu; Zhaoyang Lin; Mufan Li; Aiming Yan; Alex Zettl; Y. Morris Wang; Xiangfeng Duan; Tim Mueller; Yu Huang

Molybdenum doping drives high activity Platinum (Pt) is an effective catalyst of the oxygen reduction reaction in fuel cells but is scarce. One approach to extend Pt availability is to alloy it with more abundant metals such as nickel (Ni). Although these catalysts can be highly active, they are often not durable because of Ni loss. Huang et al. show that doping the surface of octahedral Pt3Ni nanocrystals with molybdenum not only leads to high activity (∼80 times that of a commercial catalyst) but enhances their stability. Science, this issue p. 1230 Molybdenum-doped platinum-nickel nanocrystal catalysts exhibit high activity and durability for a key fuel cell reaction. Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt3Ni octahedra supported on carbon with transition metals, termed M‐Pt3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo‐Pt3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73‐fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm2 and 0.096 A/mgPt). Theoretical calculations suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.


Science | 2016

Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction

Mufan Li; Zipeng Zhao; Tao Cheng; Alessandro Fortunelli; Chih-Yen Chen; Rong Yu; Qinghua Zhang; Lin Gu; Boris V. Merinov; Zhaoyang Lin; Enbo Zhu; Ted H. Yu; Qingying Jia; Jinghua Guo; Liang Zhang; William A. Goddard; Yu Huang; Xiangfeng Duan

An activity lift for platinum Platinum is an excellent but expensive catalyst for the oxygen reduction reaction (ORR), which is critical for fuel cells. Alloying platinum with other metals can create shells of platinum on cores of less expensive metals, which increases its surface exposure, and compressive strain in the layer can also boost its activity (see the Perspective by Stephens et al.). Bu et al. produced nanoplates—platinum-lead cores covered with platinum shells—that were in tensile strain. These nanoplates had high and stable ORR activity, which theory suggests arises from the strain optimizing the platinum-oxygen bond strength. Li et al. optimized both the amount of surface-exposed platinum and the specific activity. They made nanowires with a nickel oxide core and a platinum shell, annealed them to the metal alloy, and then leached out the nickel to form a rough surface. The mass activity was about double the best reported values from previous studies. Science, this issue p. 1410, p. 1414; see also p. 1378 Improving the platinum (Pt) mass activity for the oxygen reduction reaction (ORR) requires optimization of both the specific activity and the electrochemically active surface area (ECSA). We found that solution-synthesized Pt/NiO core/shell nanowires can be converted into PtNi alloy nanowires through a thermal annealing process and then transformed into jagged Pt nanowires via electrochemical dealloying. The jagged nanowires exhibit an ECSA of 118 square meters per gram of Pt and a specific activity of 11.5 milliamperes per square centimeter for ORR (at 0.9 volts versus reversible hydrogen electrode), yielding a mass activity of 13.6 amperes per milligram of Pt, nearly double previously reported best values. Reactive molecular dynamics simulations suggest that highly stressed, undercoordinated rhombus-rich surface configurations of the jagged nanowires enhance ORR activity versus more relaxed surfaces.


Science | 2017

Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage

Hongtao Sun; Lin Mei; Junfei Liang; Zipeng Zhao; C. O. Lee; Huilong Fei; Mengning Ding; Jonathan Lau; Mufan Li; Chen Wang; Xu Xu; Guolin Hao; Benjamin Papandrea; Imran Shakir; Bruce Dunn; Yu Huang; Xiangfeng Duan

As with donuts, the holes matter Improving the density of stored charge and increasing the speed at which it can move through a material are usually opposing objectives. Sun et al. developed a Nb2O5/holey graphene framework composite with tailored porosity. The three-dimensional, hierarchically porous holey graphene acted as a conductive scaffold to support Nb2O5. A high mass loading and improved power capability were reached by tailoring the porosity in the holey graphene backbone with higher charge transport in the composite architecture. The interconnected graphene network provided excellent electron transport, and the hierarchical porous structure in the graphene sheets facilitated rapid ion transport and mitigated diffusion limitations. Science, this issue p. 599 A graphene/Nb2O5 composite shows optimized electron and ion transport. Nanostructured materials have shown extraordinary promise for electrochemical energy storage but are usually limited to electrodes with rather low mass loading (~1 milligram per square centimeter) because of the increasing ion diffusion limitations in thicker electrodes. We report the design of a three-dimensional (3D) holey-graphene/niobia (Nb2O5) composite for ultrahigh-rate energy storage at practical levels of mass loading (>10 milligrams per square centimeter). The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties, and its hierarchical porous structure facilitates rapid ion transport. By systematically tailoring the porosity in the holey graphene backbone, charge transport in the composite architecture is optimized to deliver high areal capacity and high-rate capability at high mass loading, which represents a critical step forward toward practical applications.


Nano Letters | 2015

Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors

Yuxi Xu; Chih-Yen Chen; Zipeng Zhao; Zhaoyang Lin; C. O. Lee; Xu Xu; Chen Wang; Yu Huang; Muhammad Imran Shakir; Xiangfeng Duan

Scalable preparation of solution processable graphene and its bulk materials with high specific surface areas and designed porosities is essential for many practical applications. Herein, we report a scalable approach to produce aqueous dispersions of holey graphene oxide with abundant in-plane nanopores via a convenient mild defect-etching reaction and demonstrate that the holey graphene oxide can function as a versatile building block for the assembly of macrostructures including holey graphene hydrogels with a three-dimensional hierarchical porosity and holey graphene papers with a compact but porous layered structure. These holey graphene macrostructures exhibit significantly improved specific surface area and ion diffusion rate compared to the nonholey counterparts and can be directly used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 283 F/g and 234 F/cm(3), excellent rate capabilities, and superior cycling stabilities. Our study defines a scalable pathway to solution processable holey graphene materials and will greatly impact the applications of graphene in diverse technological areas.


Science Advances | 2015

Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

Gongming Wang; Dehui Li; Hung-Chieh Cheng; Yongjia Li; Chih-Yen Chen; Anxiang Yin; Zipeng Zhao; Zhaoyang Lin; Hao Wu; Qiyuan He; Mengning Ding; Yuan Liu; Yu Huang; Xiangfeng Duan

Scalable growth of regular arrays of perovskite microplates opens a new platform for electronic and optoelectronic device arrays. Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.


Energy and Environmental Science | 2014

A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts

Xiaoqing Huang; Zipeng Zhao; Y. Chen; Enbo Zhu; Mufan Li; Xiangfeng Duan; Yu Huang

Bimetallic PtNi nanocrystals represent an emerging class of newly discovered electrocatalysts which are expected to exhibit exciting oxygen reduction reaction (ORR) activity. Colloidal syntheses have been proven to be suitable for controlling PtNi nanocrystals with well-defined morphologies and tunable compositions with the use of capping agents or ligands. However, these colloidal PtNi nanocrystals have inherent limitations associated with the ligand-covered surfaces, which not only limit the free access of surface active sites but also hinder electron transport between the catalyst and the support, leading to deteriorated ORR performance. Herein, we report a facile one-pot strategy to synthesize highly dispersive PtNi octahedra directly on various carbon materials without using any bulky capping agents, which enhances the surface exposure of the PtNi octahedra and their catalytic activity over ORR while largely reduces the preparation costs. The obtained octahedral PtNi/C catalysts have high ORR activities of 2.53 mA cm−2 and 1.62 A mgPt−1 at 0.9 V versus RHE, which are far better than those of commercial Pt/C catalysts (0.131 mA cm−2 and 0.092 A mgPt−1, all the ORR measurements were performed at room temperature in O2-purged 0.1 M HClO4 solutions at a sweep rate of 10 mV s−1). This strategy has been extended to fabricate trimetallic PtNiCo octahedra on carbon black with further enhanced activities up to 3.88 mA cm−2 and 2.33 A mgPt−1 at 0.9 V versus RHE. The octahedral PtNiCo/C catalyst is also more stable than the commercial Pt/C under the ORR conditions and shows small activity change after 6000 potential sweeps. The work demonstrates that the carbon-supported Pt-based materials reported herein are promising material candidates with enhanced performances for practical electrocatalytic applications.


Nano Letters | 2015

Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation

Gongming Wang; Xiangheng Xiao; Wenqing Li; Zhaoyang Lin; Zipeng Zhao; Chi Chen; Chen Wang; Yongjia Li; Xiaoqing Huang; Ling Miao; Changzhong Jiang; Yu Huang; Xiangfeng Duan

Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.


Nano Letters | 2016

Morphology and Phase Controlled Construction of Pt–Ni Nanostructures for Efficient Electrocatalysis

Jiabao Ding; Lingzheng Bu; Shaojun Guo; Zipeng Zhao; Enbo Zhu; Yu Huang; Xiaoqing Huang

Highly open metallic nanoframes represent an emerging class of new nanostructures for advanced catalytic applications due to their fancy outline and largely increased accessible surface area. However, to date, the creation of bimetallic nanoframes with tunable structure remains a challenge. Herein, we develop a simple yet efficient chemical method that allows the preparation of highly composition segregated Pt-Ni nanocrystals with controllable shape and high yield. The selective use of dodecyltrimethylammonium chloride (DTAC) and control of oleylamine (OM)/oleic acid (OA) ratio are critical to the controllable creation of highly composition segregated Pt-Ni nanocrystals. While DTAC mediates the compositional anisotropic growth, the OM/OA ratio controls the shapes of the obtained highly composition segregated Pt-Ni nanocrystals. To the best of our knowledge, this is the first report on composition segregated tetrahexahedral Pt-Ni NCs. Importantly, by simply treating the highly composition segregated Pt-Ni nanocrystals with acetic acid overnight, those solid Pt-Ni nanocrystals can be readily transformed into highly open Pt-Ni nanoframes with hardly changed shape and size. The resulting highly open Pt-Ni nanoframes are high-performance electrocatalysts for both oxygen reduction reaction and alcohol oxidations, which are far better than those of commercial Pt/C catalyst. Our results reported herein suggest that enhanced catalysts can be developed by engineering the structure/composition of the nanocrystals.


Nano Letters | 2014

High density catalytic hot spots in ultrafine wavy nanowires.

Xiaoqing Huang; Zipeng Zhao; Y. Chen; Chin-Yi Chiu; Lingyan Ruan; Yuan Liu; Mufan Li; Xiangfeng Duan; Yu Huang

Structural defects/grain boundaries in metallic materials can exhibit unusual chemical reactivity and play important roles in catalysis. Bulk polycrystalline materials possess many structural defects, which is, however, usually inaccessible to solution reactants and hardly useful for practical catalytic reactions. Typical metallic nanocrystals usually exhibit well-defined crystalline structure with few defects/grain boundaries. Here, we report the design of ultrafine wavy nanowires (WNWs) with a high density of accessible structural defects/grain boundaries as highly active catalytic hot spots. We show that rhodium WNWs can be readily synthesized with controllable number of structural defects and demonstrate the number of structural defects can fundamentally determine their catalytic activity in selective oxidation of benzyl alcohol by O2, with the catalytic activity increasing with the number of structural defects. X-ray photoelectron spectroscopy (XPS) and cyclic voltammograms (CVs) studies demonstrate that the structural defects can significantly alter the chemical state of the Rh WNWs to modulate their catalytic activity. Lastly, our systematic studies further demonstrate that the concept of defect engineering in WNWs for improved catalytic performance is general and can be readily extended to other similar systems, including palladium and iridium WNWs.


Angewandte Chemie | 2016

Ultrasmall Cu7S4@MoS2 Hetero‐Nanoframes with Abundant Active Edge Sites for Ultrahigh‐Performance Hydrogen Evolution

Jun Xu; Jiabin Cui; Chong Guo; Zipeng Zhao; Rui Jiang; Suying Xu; Zhongbin Zhuang; Yu Huang; Leyu Wang; Yadong Li

Increasing the active edge sites of molybdenum disulfide (MoS2 ) is an efficient strategy to improve the overall activity of MoS2 for the hydrogen-evolution reaction (HER). Herein, we report a strategy to synthesize the ultrasmall donut-shaped Cu7 S4 @MoS2 hetero-nanoframes with abundant active MoS2 edge sites as alternatives to platinum (Pt) as efficient HER electrocatalysts. These nanoframes demonstrate an ultrahigh activity with 200 mA cm(-2) current density at only 206 mV overpotential using a carbon-rod counter electrode. The finding may provide guidelines for the design and synthesis of efficient and non-precious chalcogenide nanoframe catalysts.

Collaboration


Dive into the Zipeng Zhao's collaboration.

Top Co-Authors

Avatar

Yu Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiangfeng Duan

University of California

View shared research outputs
Top Co-Authors

Avatar

Mufan Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Gongming Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

C. O. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Enbo Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar

Mengning Ding

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoqing Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuan Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge