Zlatan I. Tsvetanov
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zlatan I. Tsvetanov.
The Astrophysical Journal | 2004
Adam G. Riess; Louis-Gregory Strolger; John L. Tonry; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Peter M. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Txitxo Benı́tez; Zlatan I. Tsvetanov
We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.
The Astronomical Journal | 2004
Gillian R. Knapp; S. K. Leggett; Xiaohui Fan; Mark S. Marley; Thomas R. Geballe; David A. Golimowski; Douglas P. Finkbeiner; James E. Gunn; Joseph F. Hennawi; Zeljko Ivezic; Robert H. Lupton; David J. Schlegel; Michael A. Strauss; Zlatan I. Tsvetanov; Kuenley Chiu; Erik Andrew Hoversten; Karl Glazebrook; W. Zheng; M. A. Hendrickson; Colin C. Williams; Alan Uomoto; Frederick J. Vrba; Arne A. Henden; Christian B. Luginbuhl; Harry H. Guetter; Jeffrey A. Munn; Blaise Canzian; Donald P. Schneider; J. Brinkmann
We present new JHK photometry on the MKO-NIR system and JHK spectroscopy for a large sample of L and T dwarfs. Photometry has been obtained for 71 dwarfs, and spectroscopy for 56. The sample comprises newly identified very red objects from the Sloan Digital Sky Survey (SDSS) and known dwarfs from the SDSS and the Two Micron All Sky Survey (2MASS). Spectral classification has been carried out using four previously defined indices from Geballe et al. that measure the strengths of the near infrared water and methane bands. We identify nine new L8?9.5 dwarfs and 14 new T dwarfs from SDSS, including the latest yet found by SDSS, the T7 dwarf SDSS J175805.46+463311.9. We classify 2MASS J04151954-0935066 as T9, the latest and coolest dwarf found to date. We combine the new results with our previously published data to produce a sample of 59 L dwarfs and 42 T dwarfs with imaging data on a single photometric system and with uniform spectroscopic classification. We compare the near-infrared colors and absolute magnitudes of brown dwarfs near the L?T transition with predictions made by models of the distribution and evolution of photospheric condensates. There is some scatter in the Geballe et al. spectral indices for L dwarfs, suggesting that these indices are probing different levels of the atmosphere and are affected by the location of the condensate cloud layer. The near-infrared colors of the L dwarfs also show scatter within a given spectral type, which is likely due to variations in the altitudes, spatial distributions, and thicknesses of the clouds. We have identified a small group of late-L dwarfs that are relatively blue for their spectral type and that have enhanced FeH, H2O, and K I absorption, possibly due to an unusually small amount of condensates. The scatter seen in the H-K color for late-T dwarfs can be reproduced by models with a range in surface gravity. The variation is probably due to the effect on the K-band flux of pressure-induced H2 opacity. The correlation of H-K color with gravity is supported by the observed strengths of the J-band K I doublet. Gravity is closely related to mass for field T dwarfs with ages greater than108 yr and the gravities implied by the H-K colors indicate that the T dwarfs in our sample have masses in the range 15?75MJupiter. One of the SDSS dwarfs, SDSS J111010.01+011613.1, is possibly a very low mass object, with log g ~ 4.2?4.5 and mass ~ 10?15MJupiter.
The Astrophysical Journal | 2005
Marc Postman; Marijn Franx; N. J. G. Cross; B. Holden; Holland C. Ford; G. D. Illingworth; Tomotsugu Goto; R. Demarco; P. Rosati; John P. Blakeslee; K.-V. Tran; N. Benítez; M. Clampin; George F. Hartig; N. Homeier; D. R. Ardila; Frank Bartko; R. J. Bouwens; L. Bradley; T. J. Broadhurst; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; Paul D. Feldman; David A. Golimowski; Caryl Gronwall; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser
We measure the morphology-density relation (MDR) and morphology-radius relation (MRR) for galaxies in seven z ~ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z850 = 24, corresponding to L/L* = 0.21 and 0.30 at z = 0.83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0.8 < z < 1.2 and that observed at z ~ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, fE+S0, with increasing density proceeds less rapidly at z ~ 1 than it does at z ~ 0. At z ~ 1 and Σ ≥ 500 galaxies Mpc-2, we find fE+S0 = 0.72 ± 0.10. At z ~ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities Σ 40 galaxies Mpc-2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The fE-density relation exhibits no significant evolution between z = 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.
The Astronomical Journal | 2002
Suzanne L. Hawley; Kevin R. Covey; Gillian R. Knapp; David A. Golimowski; Xiaohui Fan; Scott F. Anderson; James E. Gunn; Hugh C. Harris; Željko Ivezić; Gary M. Long; Robert H. Lupton; P. McGehee; Vijay K. Narayanan; Eric W. Peng; David J. Schlegel; Donald P. Schneider; Emily Y. Spahn; Michael A. Strauss; Paula Szkody; Zlatan I. Tsvetanov; Lucianne M. Walkowicz; J. Brinkmann; Michael Harvanek; Gregory S. Hennessy; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Peter R. Newman; Atsuko Nitta
An extensive sample of M, L, and T dwarfs identified in the Sloan Digital Sky Survey (SDSS) has been compiled. The sample of 718 dwarfs includes 677 new objects (629 M dwarfs and 48 L dwarfs), together with 41 that have been previously published. All new objects and some of the previously published ones have new optical spectra obtained either with the SDSS spectrographs or with the Apache Point Observatory 3.5 m ARC telescope. Spectral types and SDSS colors are available for all objects; approximately 35% also have near-infrared magnitudes measured by 2MASS (Two Micron All Sky Survey) or on the Mauna Kea system. We use this sample to characterize the color–spectral type and color-color relations of late-type dwarfs in the SDSS filters and to derive spectroscopic and photometric parallax relations for use in future studies of the luminosity and mass functions based on SDSS data. We find that the i* - z* and i* - J colors provide good spectral type and absolute magnitude (Mi*) estimates for M and L dwarfs. Our distance estimates for the current sample indicate that SDSS is finding early M dwarfs out to ~1.5 kpc, L dwarfs to ~100 pc, and T dwarfs to ~20 pc. The T dwarf photometric data show large scatter and are therefore less reliable for spectral type and distance estimation.
The Astrophysical Journal | 1994
R. J. Harms; Holland C. Ford; Zlatan I. Tsvetanov; George F. Hartig; Linda Lou Dressel; Gerard A. Kriss; Ralph C. Bohlin; Arthur F. Davidsen; Bruce Margon; Ajay K. Kochhar
Using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) to observe the central region of M87, we have obtained spectra covering approximately 4600-6800 A at a spectral dispersion approximately 4.4 A per resolution element through the .26 sec diameter entrance aperture. One spectrum was obtained centered on the nucleus of M87 and two centered 0.25 sec off the nucleus at position angles of 21 deg and 201 deg, thus sampling the anticipated major axis of the disklike structure (described in a companion Letter) expected to lie approximately perpendicular to the axis of the M87 jet. Pointing errors for these observations are estimated to be less than 0.02 sec. Radial velocities of the ionized gas in the two positions 0.25 sec on either side of the nucleus are measured to be approx. equals +/- 500 km/s relative to the M87 systemic velocity. These observations plus emission-line spectra obtained at two additional locations near the nucleus show the ionized gas to be in Keplerian rotation about a mass M = (2.4 +/- 0.7) x 10(exp 9) solar mass within the inner 0.25 sec of M87. Our results provide strong evidence for the presence of a supermassive nuclear black hole in M87.
The Astrophysical Journal | 1994
Holland C. Ford; R. J. Harms; Zlatan I. Tsvetanov; George F. Hartig; Linda Lou Dressel; Gerard A. Kriss; Ralph C. Bohlin; Arthur F. Davidsen; Bruce Margon; Ajay K. Kochhar
We present Hubble Space Telescope Wide Field/Planetary Camera-2 (HST WFPC2) narrowband H-alpha + (N II) images of M87 which show a small disk of ionized gas with apparent spiral structure surrounding the nucleus of M87. The jet projects approximately 19.5 deg from the minor axis of the disk, which suggests that the jet is approximately normal to the disk. In a companion Letter, Harms et al. measure the radial velocities at r = +/- 0.25 sec along a line perpendicular to the jet, showing that one side of the disk is approaching at 500 +/- 50 km/s and the other side of the disk is receding at 500 +/- 50 km/s. Absorption associated with the disk and the sense of rotation imply that the apparent spiral arms trail the rotation. The observed radial velocites corrected for a 42 deg inclination of the disk imply rotation at +/- 750 km/s. Analysis of velocity measurements at four positions near the nucleus gives a total mass of approximately 2.4 +/- 0.7 x 10(exp 9) solar mass within 18 pc of the nucleus, and a mass-to-light ratio (M/L)(sub I) = 170. We conclude that there is a disk of ionized gas feeding a massive black hole in the center of M87.
Astrophysical Journal Supplement Series | 2002
Patrick B. Hall; Scott F. Anderson; Michael A. Strauss; Donald G. York; Gordon T. Richards; Xiaohui Fan; Gillian R. Knapp; Donald P. Schneider; Daniel E. Vanden Berk; T. R. Geballe; Amanda Bauer; Robert H. Becker; Marc Davis; H.-W. Rix; Robert C. Nichol; Neta A. Bahcall; J. Brinkmann; Robert J. Brunner; A. J. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; James E. Gunn; Zoltan Haiman; Michael Harvanek; Timothy M. Heckman; Gregory S. Hennessy; Naohisa Inada; Željko Ivezić; David E. Johnston
The Sloan Digital Sky Survey has confirmed the existence of populations of broad absorption line (BAL) quasars with various unusual properties. We present and discuss twenty-three such objects and consider the implications of their wide range of properties for models of BAL outflows and quasars in general. We have discovered one BAL quasar with a record number of absorption lines. Two other similarly complex objects with many narrow troughs show broad Mgii absorption extending longward of their systemic host galaxy redshifts. This can be explained as absorption of an extended continuum source by the rotation-dominated base of a disk wind. Five other objects have absorption which removes an unprecedented ∼90% of all flux shortward of Mgii. The absorption in one of them has varied across the ultraviolet with an amplitude and rate of change as great as ever seen. This same object may also show broad Hβ absorption. Numerous reddened BAL quasars have been found, including at least one reddened mini-BAL quasar with very strong Feii emission. The five reddest objects have continuum reddenings of E(B − V ) ≃ 0.5, and in two of them we find strong evidence that the reddening curve is even steeper than that of the SMC. We have found at least one object with absorption from Feiii but not Feii. This may be due to a high column density of moderately high-ionization gas, but the Feiii level populations must also be affected by some sort of resonance. Finally, we have found two luminous, probably reddened high-redshift objects which may be BAL quasars whose troughs partially cover different regions of the continuum source as a function of velocity.
The Astrophysical Journal | 2004
Mark Dickinson; D. Stern; Mauro Giavalisco; Henry C. Ferguson; Zlatan I. Tsvetanov; Ryan Chornock; S. Cristiani; Steve Dawson; Arjun Dey; A. V. Filippenko; Leonidas A. Moustakas; M. Nonino; Casey Papovich; Swara Ravindranath; Adam G. Riess; P. Rosati; Hyron Spinrad; E. Vanzella
We report early results on galaxies at z ~ 6 selected from Hubble Space Telescope imaging for the Great Observatories Origins Deep Survey. Spectroscopy of one object with the Advanced Camera for Surveys grism and from the Keck and Very Large Telescope observatories shows a strong continuum break and asymmetric line emission, identified as Lyα at z = 5.83. We find only five spatially extended candidates with signal-to-noise ratios greater than 10, two of which have spectroscopic confirmation. This is much fewer than would be expected if galaxies at z = 6 had the same luminosity function as those at z = 3. There are many fainter candidates, but we expect substantial contamination from foreground interlopers and spurious detections. Our best estimates favor a z = 6 galaxy population with fainter luminosities, higher space density, and similar comoving ultraviolet emissivity to that at z = 3, but this depends critically on counts at fluxes fainter than those reliably probed by the current data.
The Astrophysical Journal | 2000
S. K. Leggett; Thomas R. Geballe; Xiaohui Fan; Donald P. Schneider; James E. Gunn; Robert H. Lupton; Gillian R. Knapp; Michael A. Strauss; Alex McDaniel; David A. Golimowski; Todd J. Henry; Eric W. Peng; Zlatan I. Tsvetanov; Alan Uomoto; Wei Zheng; Gary J. Hill; Lawrence W. Ramsey; Scott F. Anderson; James Annis; Neta A. Bahcall; J. Brinkmann; Bing Chen; István Csabai; Masataka Fukugita; Gregory S. Hennessy; Robert B. Hindsley; Željko Ivezić; D. Q. Lamb; Jeffrey A. Munn; Jeffrey R. Pier
We report the discovery of three cool brown dwarfs that fall in the effective temperature gap between the latest L dwarfs currently known, with no methane absorption bands in the 1-2.5 µm range, and the previously known methane (T) dwarfs, whose spectra are dominated by methane and water. The newly discovered objects were detected as very red objects in the Sloan Digital Sky Survey imaging data and have JHK colors between the red L dwarfs and the blue Gl 229B-like T dwarfs. They show both CO and CH(4) absorption in their near-infrared spectra in addition to H(2)O, with weaker CH(4) absorption features in the H and K bands than those in all other methane dwarfs reported to date. Due to the presence of CH(4) in these bands, we propose that these objects are early T dwarfs. The three form part of the brown dwarf spectral sequence and fill in the large gap in the overall spectral sequence from the hottest main-sequence stars to the coolest methane dwarfs currently known.
Astrophysical Journal Supplement Series | 2004
N. Benítez; Holland C. Ford; R. J. Bouwens; Felipe Menanteau; John P. Blakeslee; Caryl Gronwall; G. D. Illingworth; Gerhardt R. Meurer; T. J. Broadhurst; Mark C. Clampin; Marijn Franx; George F. Hartig; D. Magee; Marco Sirianni; D. R. Ardila; Frank Bartko; Robert A. Brown; Christopher J. Burrows; E. S. Cheng; N. J. G. Cross; Paul D. Feldman; David A. Golimowski; L. Infante; Randy A. Kimble; John E. Krist; Michael P. Lesser; Z. Levay; Andre R. Martel; G. K. Miley; Marc Postman
We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods which are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep HST observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman and Madore (2002), that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light of faint galaxies, what dramatically affects the slope of the number counts. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the g,V and I bands. We also show that combining the bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0.32+- 0.01 for 22 25.5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (\alpha=-1.5), with a strong merging rate following the prescription of Glazebrook et al. (1994), \phi^*\propto (1+Qz), with Q=4.We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. These observations cover a total area of 26.3 arcmin 2 and have depths close to that of the Hubble Deep Fields in the deepest part of the VV 29 image, with 10 � detection limits for point sources of 27.8, 27.6, and 27.2 AB magnitudes in the g F475W , VF606W ,a ndIF814W bands, respectively. Measuring the faint galaxy number count distribution is a difficult task, with different groups arriving at widely varying results even on the same data set. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods that are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep Hubble Space Telescope observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman, & Madore, that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light offaint galaxies, what dramatically affects the slope of the number counts. We show how to correct for this effect, which depends sensitively not only on the characteristics of the observations, but also on the choice of SExtractor parameters. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the F475W, F606W, and F814W bands. We also show that combining the Bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0:32 � 0:01for 22 25:5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (� ¼� 1:5), with a strong merging rate following the prescription of