Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zong Hong Zhang is active.

Publication


Featured researches published by Zong Hong Zhang.


PLOS ONE | 2014

A comparative study of techniques for differential expression analysis on RNA-Seq data.

Zong Hong Zhang; Dhanisha Jhaveri; Vikki M. Marshall; Denis C. Bauer; Janette Edson; Ramesh K. Narayanan; Gregory J. Robinson; Andreas E. Lundberg; Perry F. Bartlett; Naomi R. Wray; Qiong-Yi Zhao

Recent advances in next-generation sequencing technology allow high-throughput cDNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies, in particular for detecting differentially expressed genes between groups. Many software packages have been developed for the identification of differentially expressed genes (DEGs) between treatment groups based on RNA-Seq data. However, there is a lack of consensus on how to approach an optimal study design and choice of suitable software for the analysis. In this comparative study we evaluate the performance of three of the most frequently used software tools: Cufflinks-Cuffdiff2, DESeq and edgeR. A number of important parameters of RNA-Seq technology were taken into consideration, including the number of replicates, sequencing depth, and balanced vs. unbalanced sequencing depth within and between groups. We benchmarked results relative to sets of DEGs identified through either quantitative RT-PCR or microarray. We observed that edgeR performs slightly better than DESeq and Cuffdiff2 in terms of the ability to uncover true positives. Overall, DESeq or taking the intersection of DEGs from two or more tools is recommended if the number of false positives is a major concern in the study. In other circumstances, edgeR is slightly preferable for differential expression analysis at the expense of potentially introducing more false positives.


BMC Genomics | 2013

Global transcriptome profiles of Camellia sinensis during cold acclimation

Xinchao Wang; Qiong-Yi Zhao; Chun-Lei Ma; Zong Hong Zhang; Hong-Li Cao; Yimeng Kong; Chuan Yue; Xinyuan Hao; Liang Chen; Jian-Qiang Ma; Ji-Qiang Jin; Xuan Li; Yajun Yang

BackgroundTea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants.ResultsUsing the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the “carbohydrate metabolism pathway” and the “calcium signaling pathway” might play a vital role in tea plants’ responses to cold stress.ConclusionsOur study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.


Journal of Cell Science | 2010

WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification

Gary S. Coombs; Jia Yu; Claire A. Canning; Charles A. Veltri; Tracy M. Covey; Jit Kong Cheong; Velani Utomo; Nikhil Banerjee; Zong Hong Zhang; Raquel C. Jadulco; Gisela P. Concepcion; Tim S. Bugni; Mary Kay Harper; Ivana Mihalek; C. Michael Jones; Chris M. Ireland; David M. Virshup

Wnt proteins are secreted post-translationally modified proteins that signal locally to regulate development and proliferation. The production of bioactive Wnts requires a number of dedicated factors in the secreting cell whose coordinated functions are not fully understood. A screen for small molecules identified inhibitors of vacuolar acidification as potent inhibitors of Wnt secretion. Inhibition of the V-ATPase or disruption of vacuolar pH gradients by diverse drugs potently inhibited Wnt/β-catenin signaling both in cultured human cells and in vivo, and impaired Wnt-regulated convergent extension movements in Xenopus embryos. WNT secretion requires its binding to the carrier protein wntless (WLS); we find that WLS is ER-resident in human cells and WNT3A binding to WLS requires PORCN-dependent lipid modification of WNT3A at serine 209. Inhibition of vacuolar acidification results in accumulation of the WNT3A–WLS complex both in cells and at the plasma membrane. Modeling predictions suggest that WLS has a lipid-binding β-barrel that is similar to the lipocalin-family fold. We propose that WLS binds Wnts in part through a lipid-binding domain, and that vacuolar acidification is required to release palmitoylated WNT3A from WLS in secretory vesicles, possibly to facilitate transfer of WNT3A to a soluble carrier protein.


The Journal of Neuroscience | 2015

Purification of Neural Precursor Cells Reveals the Presence of Distinct, Stimulus-Specific Subpopulations of Quiescent Precursors in the Adult Mouse Hippocampus

Dhanisha Jhaveri; Imogen O'Keeffe; Gregory J. Robinson; Qiong-Yi Zhao; Zong Hong Zhang; Virginia Nink; Ramesh K. Narayanan; Geoffrey W. Osborne; Naomi R. Wray; Perry F. Bartlett

The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP+/Nestin-GFP+/EGFR+ cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.


Nucleic Acids Research | 2010

deconSTRUCT: general purpose protein database search on the substructure level

Zong Hong Zhang; Kavitha Bharatham; Westley A. Sherman; Ivana Mihalek

deconSTRUCT webserver offers an interface to a protein database search engine, usable for a general purpose detection of similar protein (sub)structures. Initially, it deconstructs the query structure into its secondary structure elements (SSEs) and reassembles the match to the target by requiring a (tunable) degree of similarity in the direction and sequential order of SSEs. Hierarchical organization and judicious use of the information about protein structure enables deconSTRUCT to achieve the sensitivity and specificity of the established search engines at orders of magnitude increased speed, without tying up irretrievably the substructure information in the form of a hash. In a post-processing step, a match on the level of the backbone atoms is constructed. The results presented to the user consist of the list of the matched SSEs, the transformation matrix for rigid superposition of the structures and several ways of visualization, both downloadable and implemented as a web-browser plug-in. The server is available at http://epsf.bmad.bii.a-star.edu.sg/struct_server.html.


BMC Bioinformatics | 2010

Reduced representation of protein structure: implications on efficiency and scope of detection of structural similarity

Zong Hong Zhang; Hwee Kuan Lee; Ivana Mihalek

BackgroundComputational comparison of two protein structures is the starting point of many methods that build on existing knowledge, such as structure modeling (including modeling of protein complexes and conformational changes), molecular replacement, or annotation by structural similarity. In a commonly used strategy, significant effort is invested in matching two sets of atoms. In a complementary approach, a global descriptor is assigned to the overall structure, thus losing track of the substructures within.ResultsUsing a small set of geometric features, we define a reduced representation of protein structure, together with an optimizing function for matching two representations, to provide a pre-filtering stage in a database search. We show that, in a straightforward implementation, the representation performs well in terms of resolution in the space of protein structures, and its ability to make new predictions.ConclusionsPerhaps unexpectedly, a substantial discriminating power already exists at the level of main features of protein structure, such as directions of secondary structural elements, possibly constrained by their sequential order. This can be used toward efficient comparison of protein (sub)structures, allowing for various degrees of conformational flexibility within the compared pair, which in turn can be used for modeling by homology of protein structure and dynamics.


PLOS ONE | 2011

Determinants, Discriminants, Conserved Residues - A Heuristic Approach to Detection of Functional Divergence in Protein Families

Kavitha Bharatham; Zong Hong Zhang; Ivana Mihalek

In this work, belonging to the field of comparative analysis of protein sequences, we focus on detection of functional specialization on the residue level. As the input, we take a set of sequences divided into groups of orthologues, each group known to be responsible for a different function. This provides two independent pieces of information: within group conservation and overlap in amino acid type across groups. We build our discussion around the set of scoring functions that keep the two separated and the source of the signal easy to trace back to its source. We propose a heuristic description of functional divergence that includes residue type exchangeability, both in the conservation and in the overlap measure, and does not make any assumptions on the rate of evolution in the groups other than the one under consideration. Residue types acceptable at a certain position within an orthologous group are described as a distribution which evolves in time, starting from a single ancestral type, and is subject to constraints that can be inferred only indirectly. To estimate the strength of the constraints, we compare the observed degrees of conservation and overlap with those expected in the hypothetical case of a freely evolving distribution. Our description matches the experiment well, but we also conclude that any attempt to capture the evolutionary behavior of specificity determining residues in terms of a scalar function will be tentative, because no single model can cover the variety of evolutionary behavior such residues exhibit. Especially, models expecting the same type of evolutionary behavior across functionally divergent groups tend to miss a portion of information otherwise retrievable by the conservation and overlap measures they use.


Molecular Genetics & Genomic Medicine | 2017

Whole exome sequencing and DNA methylation analysis in a clinical amyotrophic lateral sclerosis cohort

Fleur C. Garton; Beben Benyamin; Qiong-Yi Zhao; Zhijun Liu; Jacob Gratten; Anjali K. Henders; Zong Hong Zhang; Janette Edson; Sarah Furlong; Sarah Morgan; Susan Heggie; Kathryn Thorpe; Casey M. M. Pfluger; Karen A. Mather; Perminder S. Sachdev; Allan F. McRae; Matthew R. Robinson; Sonia Shah; Peter M. Visscher; Marie Mangelsdorf; Robert D. Henderson; Naomi R. Wray; Pamela A. McCombe

Gene discovery has provided remarkable biological insights into amyotrophic lateral sclerosis (ALS). One challenge for clinical application of genetic testing is critical evaluation of the significance of reported variants.


Placenta | 2017

Review: Nutrient sulfate supply from mother to fetus: Placental adaptive responses during human and animal gestation

Paul A. Dawson; Kerry Richard; Anthony V. Perkins; Zong Hong Zhang; David G. Simmons

Nutrient sulfate has numerous roles in mammalian physiology and is essential for healthy fetal growth and development. The fetus has limited capacity to generate sulfate and relies on sulfate supplied from the maternal circulation via placental sulfate transporters. The placenta also has a high sulfate requirement for numerous molecular and cellular functions, including sulfate conjugation (sulfonation) to estrogen and thyroid hormone which leads to their inactivation. Accordingly, the ratio of sulfonated (inactive) to unconjugated (active) hormones modulates endocrine function in fetal, placental and maternal tissues. During pregnancy, there is a marked increase in the expression of genes involved in transport and generation of sulfate in the mouse placenta, in line with increasing fetal and placental demands for sulfate. The maternal circulation also provides a vital reservoir of sulfate for the placenta and fetus, with maternal circulating sulfate levels increasing by 2-fold from mid-gestation. However, despite evidence from animal studies showing the requirement of maternal sulfate supply for placental and fetal physiology, there are no routine clinical measurements of sulfate or consideration of dietary sulfate intake in pregnant women. This is also relevant to certain xenobiotics or pharmacological drugs which when taken by the mother use significant quantities of circulating sulfate for detoxification and clearance, and thereby have the potential to decrease sulfonation capacity in the placenta and fetus. This article will review the physiological adaptations of the placenta for maintaining sulfate homeostasis in the fetus and placenta, with a focus on pathophysiological outcomes in animal models of disturbed sulfate homeostasis.


Genome Medicine | 2017

Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese

Jacob Gratten; Qiong-Yi Zhao; Beben Benyamin; Fleur C. Garton; Ji He; Paul Leo; Marie Mangelsdorf; Lisa Anderson; Zong Hong Zhang; Lu Chen; Xiang-Ding Chen; Katie Cremin; Hong-Weng Deng; Janette Edson; Ying-Ying Han; Jessica Harris; Anjali K. Henders; Zi-Bing Jin; Zhongshan Li; Yong Lin; Xiaolu Liu; Mhairi Marshall; Bryan J. Mowry; Shu Ran; David C. Reutens; Sharon Song; Li-Jun Tan; Lu Tang; Robyn H. Wallace; Lawrie Wheeler

BackgroundAmyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES) data from Chinese ALS and control individuals.MethodsWES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10–5 in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran–Mantel–Haenszel test to compare gene-level variant counts in cases vs controls.ResultsNo gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10–12), SOD1 (p = 8.9 × 10–9) and NEK1 (p = 1.1 × 10–9). In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10–3, respectively) and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%). This was also true for TBK1 (1.2%/0.2% vs 1.4%/0.4%), but the association with ALS in Chinese was not significant (p = 0.14).ConclusionsWhile SOD1 is already recognised as an ALS-associated gene in Chinese, we provide novel evidence for association of NEK1 with ALS in Chinese, reporting variants in these genes not previously found in Europeans.

Collaboration


Dive into the Zong Hong Zhang's collaboration.

Top Co-Authors

Avatar

Qiong-Yi Zhao

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Janette Edson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Jacob Gratten

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Naomi R. Wray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beben Benyamin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge