Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Hörlein is active.

Publication


Featured researches published by Rainer Hörlein.


Physical Review Letters | 2009

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

A. Henig; S. Steinke; M. Schnürer; T. Sokollik; Rainer Hörlein; Daniel Kiefer; D. Jung; Jörg Schreiber; B. M. Hegelich; X. Q. Yan; J. Meyer-ter-Vehn; T. Tajima; P. V. Nickles; W. Sandner; Dietrich Habs

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.


Nature Physics | 2009

Laser -driven soft-X-ray undulator source

M. Fuchs; Raphael Weingartner; Antonia Popp; Zsuzsanna Major; Stefan Becker; Jens Osterhoff; Isabella Cortrie; Benno Zeitler; Rainer Hörlein; George D. Tsakiris; U. Schramm; Tom P. Rowlands-Rees; Simon M. Hooker; Dietrich Habs; Ferenc Krausz; Stefan Karsch; Florian Grüner

High-intensity X-ray sources such as synchrotrons and free-electron lasers need large particle accelerators to drive them. The demonstration of a synchrotron X-ray source that uses a laser-driven particle accelerator could widen the availability of intense X-rays for research in physics, materials science and biology. Synchrotrons and free-electron lasers are the most powerful sources of X-ray radiation. They constitute invaluable tools for a broad range of research1; however, their dependence on large-scale radiofrequency electron accelerators means that only a few of these sources exist worldwide. Laser-driven plasma-wave accelerators2,3,4,5,6,7,8,9,10 provide markedly increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here, we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The well-collimated beams deliver soft-X-ray pulses with an expected pulse duration of ∼10 fs (inferred from plasma-accelerator physics). Our source draws on a 30-cm-long undulator11 and a 1.5-cm-long accelerator delivering stable electron beams10 with energies of ∼210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centred at a wavelength of ∼18 nm (fundamental), a second peak near ∼9 nm (second harmonic) and a high-energy cutoff at ∼7 nm. Magnetic quadrupole lenses11 ensure efficient electron-beam transport and demonstrate an enabling technology for reproducible generation of tunable undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of tunable, brilliant, ultrashort-pulsed X-ray sources for small-scale laboratories.


New Journal of Physics | 2007

GeV-scale electron acceleration in a gas-filled capillary discharge waveguide

Stefan Karsch; Jens Osterhoff; Antonia Popp; T. P. Rowlands-Rees; Zsuzsanna Major; M. Fuchs; Benjamin Marx; Rainer Hörlein; Karl Schmid; Laszlo Veisz; Stefan Becker; U. Schramm; Bernhard Hidding; Georg Pretzler; Dietrich Habs; Florian Grüner; Ferenc Krausz; Simon M. Hooker

We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 10 18 and 10 19 cm 3 . Quasi-monoenergetic electron bunches with energies as high as 500 MeV have been detected, with features reaching up to 1 GeV, albeit with large shot-to-shot fluctuations. A more stable regime with higher bunch charge (20-45 pC) and less energy (200-300 MeV) could also be observed. The beam divergence and the pointing stability are around or below 1 mrad and 8 mrad, respectively. These findings are consistent with self-injection of electrons into a breaking plasma wave.


New Journal of Physics | 2013

Efficient carbon ion beam generation from laser-driven volume acceleration

D. Jung; L. Yin; B. J. Albright; D. C. Gautier; S. Letzring; B. Dromey; M. Yeung; Rainer Hörlein; R. C. Shah; S. Palaniyappan; K. Allinger; Jörg Schreiber; K. J. Bowers; H-C Wu; J. C. Fernandez; Dietrich Habs; B. M. Hegelich

Experimental data on laser-driven carbon C6+ ion acceleration with a peak intensity of 5???1020?W?cm?2 are presented and compared for opaque target normal sheath acceleration (TNSA) and relativistically transparent laser?plasma interactions. Particle numbers, peak ion energy and conversion efficiency have been investigated for target thicknesses from 50?nm to 25??m using unprecedented full spectral beam profile line-out measurements made using a novel high-resolution ion wide-angle spectrometer. For thicknesses of about 200?nm, particle numbers and peak energy increase to 5???1011 carbon C6+ particles between 33 and 700?MeV (60?MeV?u?1), which is a factor of five higher in particle number than that observed for targets with micron thickness. For 200?nm thick targets, we find that the peak conversion efficiency is 6% and that up to 55% of the target under the laser focal spot is accelerated to energies above 33?MeV. This contrasts with the results for targets with micron thickness, where surface acceleration with TNSA is dominant. The experimental findings are consistent with two-dimensional particle-in-cell simulations.


Review of Scientific Instruments | 2011

Development of a high resolution and high dispersion Thomson parabola

D. Jung; Rainer Hörlein; Daniel Kiefer; S. Letzring; D. C. Gautier; U. Schramm; C. Hübsch; R. Öhm; B. J. Albright; Juan C. Fernandez; Dietrich Habs; B. M. Hegelich

Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.


New Journal of Physics | 2013

Laser-driven ion acceleration from relativistically transparent nanotargets

B. M. Hegelich; I. Pomerantz; L. Yin; H.-C. Wu; D. Jung; B. J. Albright; D. C. Gautier; S. Letzring; S. Palaniyappan; R. C. Shah; K. Allinger; Rainer Hörlein; Jörg Schreiber; Dietrich Habs; Joel Blakeney; G. Dyer; L. Fuller; E. Gaul; E. Mccary; A. R. Meadows; C. Wang; T. Ditmire; J. C. Fernandez

Here we present experimental results on laser-driven ion accel- eration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the


Nuclear Fusion | 2011

Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition

B. M. Hegelich; D. Jung; B. J. Albright; Juan C. Fernandez; D. C. Gautier; Chengkun Huang; Thomas J. T. Kwan; S. Letzring; S. Palaniyappan; R. C. Shah; H.-C. Wu; L. Yin; A. Henig; Rainer Hörlein; Daniel Kiefer; Jörg Schreiber; X.Q. Yan; T. Tajima; D. Habs; B. Dromey; J.J. Honrubia

Research on fusion fast ignition (FI) initiated by laser-driven ion beams has made substantial progress in the last years. Compared with electrons, FI based on a beam of quasi-monoenergetic ions has the advantage of a more localized energy deposition, and stiffer particle transport, bringing the required total beam energy close to the theoretical minimum. Due to short pulse laser drive, the ion beam can easily deliver the 200 TW power required to ignite the compressed D–T fuel. In integrated calculations we recently simulated ion-based FI targets with high fusion gain targets and a proof of principle experiment [1]. These simulations identify three key requirements for the success of ion-driven fast ignition (IFI): (1) the generation of a sufficiently high-energetic ion beam (≈400–500 MeV for C), with (2) less than 20% energy spread at (3) more than 10% conversion efficiency of laser to beam energy. Here we present for the first time new experimental results, demonstrating all three parameters in separate experiments. Using diamond nanotargets and ultrahigh contrast laser pulses we were able to demonstrate >500 MeV carbon ions, as well as carbon pulses with ΔE/E < 20%. The first measurements put the total conversion efficiency of laser light into high energy carbon ions on the order of 10%.


Review of Scientific Instruments | 2011

A novel high resolution ion wide angle spectrometer

D. Jung; Rainer Hörlein; D. C. Gautier; S. Letzring; Daniel Kiefer; K. Allinger; B. J. Albright; R. C. Shah; S. Palaniyappan; L. Yin; J. C. Fernandez; Dietrich Habs; B. M. Hegelich

A novel ion wide angle spectrometer (iWASP) has been developed, which is capable of measuring angularly resolved energy distributions of protons and a second ion species, such as carbon C(6 +), simultaneously. The energy resolution for protons and carbon ions is better than 10% at ∼50 MeV/nucleon and thus suitable for the study of novel laser-ion acceleration schemes aiming for ultrahigh particle energies. A wedged magnet design enables an acceptance angle of 30°(∼524 mrad) and high angular accuracy in the μrad range. First, results obtained at the LANL Trident laser facility are presented demonstrating high energy and angular resolution of this novel iWASP.


New Journal of Physics | 2008

High contrast plasma mirror: spatial filtering and second harmonic generation at 1019 W cm-2

Rainer Hörlein; B. Dromey; D. Adams; Yutaka Nomura; S. Kar; K. Markey; P.S. Foster; D. Neely; Ferenc Krausz; George D. Tsakiris; Matthew Zepf

Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high-power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10 15 -10 16 Wcm 2 ) showing high reflectivity ( 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (>10 18 Wcm 2 ). Previous studies of plasma mirrors (PMs) indicate that, for 40fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5◊10 16 Wcm 2 . However, these experiments were performed using laser pulses with a contrast ratio of 10 7 to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting 5 Author to whom any correspondence should be addressed.


New Journal of Physics | 2010

Temporal characterization of attosecond pulses emitted from solid-density plasmas

Rainer Hörlein; Yutaka Nomura; P. Tzallas; Sergey Rykovanov; B. Dromey; Jens Osterhoff; Zsuzsanna Major; Stefan Karsch; Laszlo Veisz; Matthew Zepf; D. Charalambidis; Ferenc Krausz; George D. Tsakiris

The generation of high harmonics from solid-density plasmas promises the production of attosecond (as) pulses orders of magnitude brighter than those from conventional rare gas sources. However, while spatial and spectral emission of surface harmonics has been characterized in detail in many experiments proof that the harmonic emission is indeed phase locked and thus bunched in as-pulses has only been delivered recently (Nomura et al 2009 Nat. Phys. 5 124–8). In this paper, we discuss the experimental setup of our extreme ultraviolet (XUV) autocorrelation (AC) device in detail and show the first two-photon ionization and subsequent AC experiment using solid target harmonics. In addition, we describe a simple analytical model to estimate the chirp between the individual generated harmonics in the sub- and mildly relativistic regime and validate it using particle-in-cell (PIC) simulations. Finally, we propose several methods applicable to surface harmonics to extend the temporal pulse characterization to higher photon energies and for the reconstruction of the spectral phase between the individual harmonics. The experiments described in this paper prove unambiguously that harmonic emission from solid-density plasmas indeed occurs as a train of sub-femtosecond pulses and thus fulfills the most important property for a next-generation as-pulse source of unprecedented brightness.

Collaboration


Dive into the Rainer Hörlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Dromey

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

D. Jung

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge