Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zvi Ioav Cabantchik is active.

Publication


Featured researches published by Zvi Ioav Cabantchik.


Transfusion Science | 2000

The importance of non-transferrin bound iron in disorders of iron metabolism.

William Breuer; Chaim Hershko; Zvi Ioav Cabantchik

The concept of non-transferrin bound iron (NTBI) was introduced 22 years ago by Hershko et al. (Brit. J. Haematol. 40 (1978) 255). It stemmed from a suspicion that, in iron overloaded patients, the large amounts of excess iron released into the circulation are likely to exceed the serum transferrin (Tf) iron-binding capacity (TIBC), leading to the appearance of various forms of iron not bound to Tf. In accordance with this assumption, NTBI was initially looked for and detected in patients with > or = 100% Tf-saturation. As techniques for its detection became more sophisticated and sensitive, NTBI was also found in conditions where Tf was not fully saturated, leading to a revision of the original view of NTBI as a simple spillover phenomenon. In this review, we will discuss some of the properties of NTBI, methods for its detection, its significance and potential value as an indicator for therapeutic regimens of iron chelation and supplementation.


European Journal of Clinical Investigation | 2002

Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin‐bound iron in dialysis patients

Breno Pania Esposito; William Breuer; I. Slotki; Zvi Ioav Cabantchik

Background Labile plasma iron (LPI) associated with iron supplementation has been implicated in complications found in dialysis patients. As LPI can potentially catalyse oxygen radical generation, we determined the presence of labile iron in the parenteral preparations and the frequency of occurrence of LPI in dialysis patients.


Frontiers in Pharmacology | 2014

Labile iron in cells and body fluids: physiology, pathology, and pharmacology

Zvi Ioav Cabantchik

In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI) composition varies with metal concentration and substances with chelating groups but also with pH and the medium redox potential. Although physiologically in the lower μM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS) formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (Tf; that renders iron essentially non-labile), in systemic iron overload (IO), the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma Tf approaches iron saturation, labile plasma iron (LPI) emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of IO, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in intravenous iron formulations per se as well as in plasma (LPI) following parenteral iron administration.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein

John A. Zuris; Yael Harir; Andrea R. Conlan; Maya Shvartsman; Dorit Michaeli; Sagi Tamir; Mark L. Paddock; José N. Onuchic; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

MitoNEET (mNT) is an outer mitochondrial membrane target of the thiazolidinedione diabetes drugs with a unique fold and a labile [2Fe-2S] cluster. The rare 1-His and 3-Cys coordination of mNT’s [2Fe-2S] leads to cluster lability that is strongly dependent on the presence of the single histidine ligand (His87). These properties of mNT are similar to known [2Fe-2S] shuttle proteins. Here we investigated whether mNT is capable of cluster transfer to acceptor protein(s). Facile [2Fe-2S] cluster transfer is observed between oxidized mNT and apo-ferredoxin (a-Fd) using UV-VIS spectroscopy and native-PAGE, as well as with a mitochondrial iron detection assay in cells. The transfer is unidirectional, proceeds to completion, and occurs with a second-order-reaction rate that is comparable to known iron-sulfur transfer proteins. Mutagenesis of His87 with Cys (H87C) inhibits transfer of the [2Fe-2S] clusters to a-Fd. This inhibition is beyond that expected from increased cluster kinetic stability, as the equivalently stable Lys55 to Glu (K55E) mutation did not inhibit transfer. The H87C mutant also failed to transfer its iron to mitochondria in HEK293 cells. The diabetes drug pioglitazone inhibits iron transfer from WT mNT to mitochondria, indicating that pioglitazone affects a specific property, [2Fe-2S] cluster transfer, in the cellular environment. This finding is interesting in light of the role of iron overload in diabetes. Our findings suggest a likely role for mNT in [2Fe-2S] and/or iron transfer to acceptor proteins and support the idea that pioglitazone’s antidiabetic mode of action may, in part, be to inhibit transfer of mNT’s [2Fe-2S] cluster.


British Journal of Haematology | 2009

Daily labile plasma iron as an indicator of chelator activity in Thalassaemia major patients

Giuliana Zanninelli; William Breuer; Zvi Ioav Cabantchik

Labile plasma iron (LPI), a non‐transferrin‐bound component of plasma iron detected in iron overload disorders is a potential source of cellular iron accumulation and ensuing oxidative damage. Periodic monitoring of LPI over a 24 h time‐span was used to compare the ability of chelation to control daily LPI levels in 40 Thalassaemia major patients (9–11/group) who had been receiving one of three different chelation protocols for more than a year: Group I. deferrioxamine overnight, Group II. deferiprone daily, Group III. deferrioxamine and deferiprone sequentially. An additional group (Group IV) was treated with desferasirox for up to 6 months. The patterns of daily LPI recrudescence showed significant individual variations, especially in patients treated with deferrioxamine or deferiprone, although these patterns were maintained over 6–9 months of treatment in all groups. Group data analysis showed that the proportion of patients whose daily LPI were maintained within the normal range (<0·45 μmol/l) varied with treatment: 6/10 with deferrioxamine, 5/11 with deferiprone, 9/10 with deferrioxamine + deferiprone and 8/10 at the onset and 10/10 after 6 months treatment with deferasirox. Although the clinical significance and therapeutic value of LPI remain to be established, monitoring of daily LPI level may provide an analytical basis for assessing chelation efficacy in preventing daily LPI recrudescence.


The Plant Cell | 2012

Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism.

Rachel Nechushtai; Andrea R. Conlan; Yael Harir; Luhua Song; Ohad Yogev; Yael Eisenberg-Domovich; Oded Livnah; Dorit Michaeli; Rachel Rosen; Vincent Ma; Yuting Luo; John A. Zuris; Mark L. Paddock; Zvi Ioav Cabantchik; Patricia A. Jennings; Ron Mittler

This work describes biochemical, biophysical, structural, and genetic analyses of an Arabidopsis homolog of mammalian NEET proteins, which are involved in a wide range of cellular processes. It finds that At-NEET plays a key role in plant development, senescence, reactive oxygen species homeostasis, and iron metabolism. The NEET family is a newly discovered group of proteins involved in a diverse array of biological processes, including autophagy, apoptosis, aging, diabetes, and reactive oxygen homeostasis. They form a novel structure, the NEET fold, in which two protomers intertwine to form a two-domain motif, a cap, and a unique redox-active labile 2Fe-2S cluster binding domain. To accelerate the functional study of NEET proteins, as well as to examine whether they have an evolutionarily conserved role, we identified and characterized a plant NEET protein. Here, we show that the Arabidopsis thaliana At5g51720 protein (At-NEET) displays biochemical, structural, and biophysical characteristics of a NEET protein. Phenotypic characterization of At-NEET revealed a key role for this protein in plant development, senescence, reactive oxygen homeostasis, and Fe metabolism. A role in Fe metabolism was further supported by biochemical and cell biology studies of At-NEET in plant and mammalian cells, as well as mutational analysis of its cluster binding domain. Our findings support the hypothesis that NEET proteins have an ancient role in cells associated with Fe metabolism.


Free Radical Biology and Medicine | 2015

Iron and oxidative stress in cardiomyopathy in thalassemia

Vasilios Berdoukas; Thomas D. Coates; Zvi Ioav Cabantchik

With repeated blood transfusions, patients with thalassemia major rapidly become loaded with iron, often surpassing hepatic metal accumulation capacity within ferritin shells and infiltrating heart and endocrine organs. That pathological scenario contrasts with the physiological one, which is characterized by an efficient maintenance of all plasma iron bound to circulating transferrin, due to a tight control of iron ingress into plasma by the hormone hepcidin. Within cells, most of the acquired iron becomes protein-associated, as once released from endocytosed transferrin, it is used within mitochondria for the synthesis of protein prosthetic groups or it is incorporated into enzyme active centers or alternatively sequestered within ferritin shells. A few cell types also express the iron extrusion transporter ferroportin, which is under the negative control of circulating hepcidin. However, that system only backs up the major cell regulated iron uptake/storage machinery that is poised to maintain a basal level of labile cellular iron for metabolic purposes without incurring potentially toxic scenarios. In thalassemia and other transfusion iron-loading conditions, once transferrin saturation exceeds about 70%, labile forms of iron enter the circulation and can gain access to various types of cells via resident transporters or channels. Within cells, they can attain levels that exceed their ability to chemically cope with labile iron, which has a propensity for generating reactive oxygen species (ROS), thereby inducing oxidative damage. This scenario occurs in the heart of hypertransfused thalassemia major patients who do not receive adequate iron-chelation therapy. Iron that accumulates in cardiomyocytes forms agglomerates that are detected by T2* MRI. The labile forms of iron infiltrate the mitochondria and damage cells by inducing noxious ROS formation, resulting in heart failure. The very rapid relief of cardiac dysfunction seen after intensive iron-chelation therapy in some patients with thalassemia major is thought to be due to the relief of the cardiac mitochondrial dysfunction caused by oxidative stress or to the removal of labile iron interference with calcium fluxes through cardiac calcium channels. In fact, improvement occurs well before there is any significant improvement in the total level of cardiac iron loading. The oral iron chelator deferiprone, because of its small size and neutral charge, demonstrably enters cells and chelates labile iron, thereby rapidly reducing ROS formation, allowing better mitochondrial activity and improved cardiac function. Deferiprone may also rapidly improve arrhythmias in patients who do not have excessive cardiac iron. It maintains the flux of iron in the direction hemosiderin to ferritin to free iron, and it allows clearance of cardiac iron in the presence of other iron chelators or when used alone. To date, the most commonly used chelator combination therapy is deferoxamine plus deferiprone, whereas other combinations are in the process of assessment. In summary, it is imperative that patients with thalassemia major have iron chelators continuously present in their circulation to prevent exposure of the heart to labile iron, reduce cardiac toxicity, and improve cardiac function.


PLOS ONE | 2013

Nutrient-Deprivation Autophagy Factor-1 (NAF-1): Biochemical Properties of a Novel Cellular Target for Anti-Diabetic Drugs

Sagi Tamir; John A. Zuris; Lily Agranat; Colin H. Lipper; Andrea R. Conlan; Dorit Michaeli; Yael Harir; Mark L. Paddock; Ron Mittler; Zvi Ioav Cabantchik; Patricia A. Jennings; Rachel Nechushtai

Nutrient-deprivation autophagy factor-1 (NAF-1) (synonyms: Cisd2, Eris, Miner1, and Noxp70) is a [2Fe-2S] cluster protein immune-detected both in endoplasmic reticulum (ER) and mitochondrial outer membrane. It was implicated in human pathology (Wolfram Syndrome 2) and in BCL-2 mediated antagonization of Beclin 1-dependent autophagy and depression of ER calcium stores. To gain insights about NAF-1 functions, we investigated the biochemical properties of its 2Fe-2S cluster and sensitivity of those properties to small molecules. The structure of the soluble domain of NAF-1 shows that it forms a homodimer with each protomer containing a [2Fe-2S] cluster bound by 3 Cys and one His. NAF-1 has shown the unusual abilities to transfer its 2Fe-2S cluster to an apo-acceptor protein (followed in vitro by spectrophotometry and by native PAGE electrophoresis) and to transfer iron to intact mitochondria in cell models (monitored by fluorescence imaging with iron fluorescent sensors targeted to mitochondria). Importantly, the drug pioglitazone abrogates NAF-1s ability to transfer the cluster to acceptor proteins and iron to mitochondria. Similar effects were found for the anti-diabetes and longevity-promoting antioxidant resveratrol. These results reveal NAF-1 as a previously unidentified cell target of anti-diabetes thiazolidinedione drugs like pioglitazone and of the natural product resveratrol, both of which interact with the protein and stabilize its labile [2Fe-2S] cluster.


Haematologica | 2012

The role of endocytic pathways in cellular uptake of plasma non-transferrin iron

Yang-Sung Sohn; Hussam Ghoti; Breuer W; Eliezer A. Rachmilewitz; Attar S; Weiss G; Zvi Ioav Cabantchik

Background In transfusional siderosis, the iron binding capacity of plasma transferrin is often surpassed, with concomitant generation of non-transferrin-bound iron. Although implicated in tissue siderosis, non-transferrin-bound iron modes of cell ingress remain undefined, largely because of its variable composition and association with macromolecules. Using fluorescent tracing of labile iron in endosomal vesicles and cytosol, we examined the hypothesis that non-transferrin-bound iron fractions detected in iron overloaded patients enter cells via bulk endocytosis. Design and Methods Fluorescence microscopy and flow cytometry served as analytical tools for tracing non-transferrin-bound iron entry into endosomes with the redox-reactive macromolecular probe Oxyburst-Green and into the cytosol with cell-laden calcein green and calcein blue. Non-transferrin-bound iron-containing media were from sera of polytransfused thalassemia major patients and model iron substances detected in thalassemia major sera; cell models were cultured macrophages, and cardiac myoblasts and myocytes. Results Exposure of cells to ferric citrate together with albumin, or to non-transferrin-bound iron-containing sera from thalassemia major patients caused an increase in labile iron content of endosomes and cytosol in macrophages and cardiac cells. This increase was more striking in macrophages, but in both cell types was largely reduced by co-exposure to non-transferrin-bound iron-containing media with non-penetrating iron chelators or apo-transferrin, or by treatment with inhibitors of endocytosis. Endosomal iron accumulation traced with calcein-green was proportional to input non-transferrin-bound iron levels (r2=0.61) and also preventable by pre-chelation. Conclusions Our studies indicate that macromolecule-associated non-transferrin-bound iron can initially gain access into various cells via endocytic pathways, followed by iron translocation to the cytosol. Endocytic uptake of plasma non-transferrin-bound iron is a possible mechanism that can contribute to iron loading of cell types engaged in bulk/adsorptive endocytosis, highlighting the importance of its prevention by iron chelation.


Frontiers in Pharmacology | 2013

Regional siderosis: a new challenge for iron chelation therapy

Zvi Ioav Cabantchik; Arnold Munnich; Moussa B. H. Youdim; David Devos

The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g., sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinsons disease). We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation of dual activity, one based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The “scavenging and redeployment” mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinsons disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic functions.

Collaboration


Dive into the Zvi Ioav Cabantchik's collaboration.

Top Co-Authors

Avatar

William Breuer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Chaim Hershko

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Maya Shvartsman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Or Kakhlon

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yosef Gruenbaum

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Zuris

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Mittler

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge