Featured Researches

Artificial Intelligence

Player Modeling via Multi-Armed Bandits

This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This approach addresses, at the same time and in a principled way, both the problem of collecting data to model the characteristics of interest for the current player and the problem of adapting the interactive experience based on this model. Second, we present an approach to evaluating and fine-tuning these algorithms prior to generating data in a user study. This is an important problem, because conducting user studies is an expensive and labor-intensive process; therefore, an ability to evaluate the algorithms beforehand can save a significant amount of resources. We evaluate our approach in the context of modeling players' social comparison orientation (SCO) and present empirical results from both simulations and real players.

Read more
Artificial Intelligence

Player-Centered AI for Automatic Game Personalization: Open Problems

Computer games represent an ideal research domain for the next generation of personalized digital applications. This paper presents a player-centered framework of AI for game personalization, complementary to the commonly used system-centered approaches. Built on the Structure of Actions theory, the paper maps out the current landscape of game personalization research and identifies eight open problems that need further investigation. These problems require deep collaboration between technological advancement and player experience design.

Read more
Artificial Intelligence

Playing Carcassonne with Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a relatively new sampling method with multiple variants in the literature. They can be applied to a wide variety of challenging domains including board games, video games, and energy-based problems to mention a few. In this work, we explore the use of the vanilla MCTS and the MCTS with Rapid Action Value Estimation (MCTS-RAVE) in the game of Carcassonne, a stochastic game with a deceptive scoring system where limited research has been conducted. We compare the strengths of the MCTS-based methods with the Star2.5 algorithm, previously reported to yield competitive results in the game of Carcassonne when a domain-specific heuristic is used to evaluate the game states. We analyse the particularities of the strategies adopted by the algorithms when they share a common reward system. The MCTS-based methods consistently outperformed the Star2.5 algorithm given their ability to find and follow long-term strategies, with the vanilla MCTS exhibiting a more robust game-play than the MCTS-RAVE.

Read more
Artificial Intelligence

Policy Gradient Reinforcement Learning for Policy Represented by Fuzzy Rules: Application to Simulations of Speed Control of an Automobile

A method of a fusion of fuzzy inference and policy gradient reinforcement learning has been proposed that directly learns, as maximizes the expected value of the reward per episode, parameters in a policy function represented by fuzzy rules with weights. A study has applied this method to a task of speed control of an automobile and has obtained correct policies, some of which control speed of the automobile appropriately but many others generate inappropriate vibration of speed. In general, the policy is not desirable that causes sudden time change or vibration in the output value, and there would be many cases where the policy giving smooth time change in the output value is desirable. In this paper, we propose a fusion method using the objective function, that introduces defuzzification with the center of gravity model weighted stochastically and a constraint term for smoothness of time change, as an improvement measure in order to suppress sudden change of the output value of the fuzzy controller. Then we show the learning rule in the fusion, and also consider the effect by reward functions on the fluctuation of the output value. As experimental results of an application of our method on speed control of an automobile, it was confirmed that the proposed method has the effect of suppressing the undesirable fluctuation in time-series of the output value. Moreover, it was also showed that the difference between reward functions might adversely affect the results of learning.

Read more
Artificial Intelligence

Possible Controllability of Control Argumentation Frameworks -- Extended Version

The recent Control Argumentation Framework (CAF) is a generalization of Dung's Argumentation Framework which handles argumentation dynamics under uncertainty; especially it can be used to model the behavior of an agent which can anticipate future changes in the environment. Here we provide new insights on this model by defining the notion of possible controllability of a CAF. We study the complexity of this new form of reasoning for the four classical semantics, and we provide a logical encoding for reasoning with this framework.

Read more
Artificial Intelligence

Potential Impacts of Smart Homes on Human Behavior: A Reinforcement Learning Approach

We aim to investigate the potential impacts of smart homes on human behavior. To this end, we simulate a series of human models capable of performing various activities inside a reinforcement learning-based smart home. We then investigate the possibility of human behavior being altered as a result of the smart home and the human model adapting to one-another. We design a semi-Markov decision process human task interleaving model based on hierarchical reinforcement learning that learns to make decisions to either pursue or leave an activity. We then integrate our human model in the smart home which is based on Q-learning. We show that a smart home trained on a generic human model is able to anticipate and learn the thermal preferences of human models with intrinsic rewards similar to the generic model. The hierarchical human model learns to complete each activity and set optimal thermal settings for maximum comfort. With the smart home, the number of time steps required to change the thermal settings are reduced for the human models. Interestingly, we observe that small variations in the human model reward structures can lead to the opposite behavior in the form of unexpected switching between activities which signals changes in human behavior due to the presence of the smart home.

Read more
Artificial Intelligence

Predicting Requests in Large-Scale Online P2P Ridesharing

Peer-to-peer ridesharing (P2P-RS) enables people to arrange one-time rides with their own private cars, without the involvement of professional drivers. It is a prominent collective intelligence application producing significant benefits both for individuals (reduced costs) and for the entire community (reduced pollution and traffic), as we showed in a recent publication where we proposed an online approximate solution algorithm for large-scale P2P-RS. In this paper we tackle the fundamental question of assessing the benefit of predicting ridesharing requests in the context of P2P-RS optimisation. Results on a public real-world show that, by employing a perfect predictor, the total reward can be improved by 5.27% with a forecast horizon of 1 minute. On the other hand, a vanilla long short-term memory neural network cannot improve upon a baseline predictor that simply replicates the previous day's requests, whilst achieving an almost-double accuracy.

Read more
Artificial Intelligence

Principles of Explanation in Human-AI Systems

Explainable Artificial Intelligence (XAI) has re-emerged in response to the development of modern AI and ML systems. These systems are complex and sometimes biased, but they nevertheless make decisions that impact our lives. XAI systems are frequently algorithm-focused; starting and ending with an algorithm that implements a basic untested idea about explainability. These systems are often not tested to determine whether the algorithm helps users accomplish any goals, and so their explainability remains unproven. We propose an alternative: to start with human-focused principles for the design, testing, and implementation of XAI systems, and implement algorithms to serve that purpose. In this paper, we review some of the basic concepts that have been used for user-centered XAI systems over the past 40 years of research. Based on these, we describe the "Self-Explanation Scorecard", which can help developers understand how they can empower users by enabling self-explanation. Finally, we present a set of empirically-grounded, user-centered design principles that may guide developers to create successful explainable systems.

Read more
Artificial Intelligence

Priority-based Post-Processing Bias Mitigation for Individual and Group Fairness

Previous post-processing bias mitigation algorithms on both group and individual fairness don't work on regression models and datasets with multi-class numerical labels. We propose a priority-based post-processing bias mitigation on both group and individual fairness with the notion that similar individuals should get similar outcomes irrespective of socio-economic factors and more the unfairness, more the injustice. We establish this proposition by a case study on tariff allotment in a smart grid. Our novel framework establishes it by using a user segmentation algorithm to capture the consumption strategy better. This process ensures priority-based fair pricing for group and individual facing the maximum injustice. It upholds the notion of fair tariff allotment to the entire population taken into consideration without modifying the in-built process for tariff calculation. We also validate our method and show superior performance to previous work on a real-world dataset in criminal sentencing.

Read more
Artificial Intelligence

Privacy Information Classification: A Hybrid Approach

A large amount of information has been published to online social networks every day. Individual privacy-related information is also possibly disclosed unconsciously by the end-users. Identifying privacy-related data and protecting the online social network users from privacy leakage turn out to be significant. Under such a motivation, this study aims to propose and develop a hybrid privacy classification approach to detect and classify privacy information from OSNs. The proposed hybrid approach employs both deep learning models and ontology-based models for privacy-related information extraction. Extensive experiments are conducted to validate the proposed hybrid approach, and the empirical results demonstrate its superiority in assisting online social network users against privacy leakage.

Read more

Ready to get started?

Join us today