Featured Researches

Artificial Intelligence

On the Verification and Validation of AI Navigation Algorithms

This paper explores the state of the art on to methods to verify and validate navigation algorithms for autonomous surface ships. We perform a systematic mapping study to find research works published in the last 10 years proposing new algorithms for autonomous navigation and collision avoidance and we have extracted what verification and validation approaches have been applied on these algorithms. We observe that most research works use simulations to validate their algorithms. However, these simulations often involve just a few scenarios designed manually. This raises the question if the algorithms have been validated properly. To remedy this, we propose the use of a systematic scenario-based testing approach to validate navigation algorithms extensively.

Read more
Artificial Intelligence

On the use of evidence theory in belief base revision

This paper deals with belief base revision that is a form of belief change consisting of the incorporation of new facts into an agent's beliefs represented by a finite set of propositional formulas. In the aim to guarantee more reliability and rationality for real applications while performing revision, we propose the idea of credible belief base revision yielding to define two new formula-based revision operators using the suitable tools offered by evidence theory. These operators, uniformly presented in the same spirit of others in [9], stem from consistent subbases maximal with respect to credibility instead of set inclusion and cardinality. Moreover, in between these two extremes operators, evidence theory let us shed some light on a compromise operator avoiding losing initial beliefs to the maximum extent possible. Its idea captures maximal consistent sets stemming from all possible intersections of maximal consistent subbases. An illustration of all these operators and a comparison with others are inverstigated by examples.

Read more
Artificial Intelligence

One head is better than two: a polynomial restriction for propositional definite Horn forgetting

Logical forgetting is NP-complete even in the simple case of propositional Horn formulae, and may exponentially increase their size. A way to forget is to replace each variable to forget with the body of each clause whose head is the variable. It takes polynomial time in the single-head case: each variable is at most the head of a clause. Some formulae are not single-head but can be made so to simplify forgetting. They are single-head equivalent. The first contribution of this article is the study of a semantical characterization of single-head equivalence. Two necessary conditions are given. They are sufficient when the formula is inequivalent: it makes two sets of variables equivalent only if they are also equivalent to their intersection. All acyclic formulae are inequivalent. The second contribution of this article is an incomplete algorithm for turning a formula single-head. In case of success, forgetting becomes possible in polynomial time and produces a polynomial-size formula, none of which is otherwise guaranteed. The algorithm is complete on inequivalent formulae.

Read more
Artificial Intelligence

Online Learning of Non-Markovian Reward Models

There are situations in which an agent should receive rewards only after having accomplished a series of previous tasks, that is, rewards are non-Markovian. One natural and quite general way to represent history-dependent rewards is via a Mealy machine, a finite state automaton that produces output sequences from input sequences. In our formal setting, we consider a Markov decision process (MDP) that models the dynamics of the environment in which the agent evolves and a Mealy machine synchronized with this MDP to formalize the non-Markovian reward function. While the MDP is known by the agent, the reward function is unknown to the agent and must be learned. Our approach to overcome this challenge is to use Angluin's L ∗ active learning algorithm to learn a Mealy machine representing the underlying non-Markovian reward machine (MRM). Formal methods are used to determine the optimal strategy for answering so-called membership queries posed by L ∗ . Moreover, we prove that the expected reward achieved will eventually be at least as much as a given, reasonable value provided by a domain expert. We evaluate our framework on three problems. The results show that using L ∗ to learn an MRM in a non-Markovian reward decision process is effective.

Read more
Artificial Intelligence

OntoZSL: Ontology-enhanced Zero-shot Learning

Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs). Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).

Read more
Artificial Intelligence

Optimal Inspection and Maintenance Planning for Deteriorating Structures through Dynamic Bayesian Networks and Markov Decision Processes

Civil and maritime engineering systems, among others, from bridges to offshore platforms and wind turbines, must be efficiently managed as they are exposed to deterioration mechanisms throughout their operational life, such as fatigue or corrosion. Identifying optimal inspection and maintenance policies demands the solution of a complex sequential decision-making problem under uncertainty, with the main objective of efficiently controlling the risk associated with structural failures. Addressing this complexity, risk-based inspection planning methodologies, supported often by dynamic Bayesian networks, evaluate a set of pre-defined heuristic decision rules to reasonably simplify the decision problem. However, the resulting policies may be compromised by the limited space considered in the definition of the decision rules. Avoiding this limitation, Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical methodology for stochastic optimal control under uncertain action outcomes and observations, in which the optimal actions are prescribed as a function of the entire, dynamically updated, state probability distribution. In this paper, we combine dynamic Bayesian networks with POMDPs in a joint framework for optimal inspection and maintenance planning, and we provide the formulation for developing both infinite and finite horizon POMDPs in a structural reliability context. The proposed methodology is implemented and tested for the case of a structural component subject to fatigue deterioration, demonstrating the capability of state-of-the-art point-based POMDP solvers for solving the underlying planning optimization problem. Within the numerical experiments, POMDP and heuristic-based policies are thoroughly compared, and results showcase that POMDPs achieve substantially lower costs as compared to their counterparts, even for traditional problem settings.

Read more
Artificial Intelligence

Optimal Sepsis Patient Treatment using Human-in-the-loop Artificial Intelligence

Sepsis is one of the leading causes of death in Intensive Care Units (ICU). The strategy for treating sepsis involves the infusion of intravenous (IV) fluids and administration of antibiotics. Determining the optimal quantity of IV fluids is a challenging problem due to the complexity of a patient's physiology. In this study, we develop a data-driven optimization solution that derives the optimal quantity of IV fluids for individual patients. The proposed method minimizes the probability of severe outcomes by controlling the prescribed quantity of IV fluids and utilizes human-in-the-loop artificial intelligence. We demonstrate the performance of our model on 1122 ICU patients with sepsis diagnosis extracted from the MIMIC-III dataset. The results show that, on average, our model can reduce mortality by 22%. This study has the potential to help physicians synthesize optimal, patient-specific treatment strategies.

Read more
Artificial Intelligence

Optimising Long-Term Outcomes using Real-World Fluent Objectives: An Application to Football

In this paper, we present a novel approach for optimising long-term tactical and strategic decision-making in football (soccer) by encapsulating events in a league environment across a given time frame. We model the teams' objectives for a season and track how these evolve as games unfold to give a fluent objective that can aid in decision-making games. We develop Markov chain Monte Carlo and deep learning-based algorithms that make use of the fluent objectives in order to learn from prior games and other games in the environment and increase the teams' long-term performance. Simulations of our approach using real-world datasets from 760 matches shows that by using optimised tactics with our fluent objective and prior games, we can on average increase teams mean expected finishing distribution in the league by up to 35.6%.

Read more
Artificial Intelligence

Optimizing αμ

αμ is a search algorithm which repairs two defaults of Perfect Information Monte Carlo search: strategy fusion and non locality. In this paper we optimize αμ for the game of Bridge, avoiding useless computations. The proposed optimizations are general and apply to other imperfect information turn-based games. We define multiple optimizations involving Pareto fronts, and show that these optimizations speed up the search. Some of these optimizations are cuts that stop the search at a node, while others keep track of which possible worlds have become redundant, avoiding unnecessary, costly evaluations. We also measure the benefits of parallelizing the double dummy searches at the leaves of the αμ search tree.

Read more
Artificial Intelligence

Optimizing Hospital Room Layout to Reduce the Risk of Patient Falls

Despite years of research into patient falls in hospital rooms, falls and related injuries remain a serious concern to patient safety. In this work, we formulate a gradient-free constrained optimization problem to generate and reconfigure the hospital room interior layout to minimize the risk of falls. We define a cost function built on a hospital room fall model that takes into account the supportive or hazardous effect of the patient's surrounding objects, as well as simulated patient trajectories inside the room. We define a constraint set that ensures the functionality of the generated room layouts in addition to conforming to architectural guidelines. We solve this problem efficiently using a variant of simulated annealing. We present results for two real-world hospital room types and demonstrate a significant improvement of 18% on average in patient fall risk when compared with a traditional hospital room layout and 41% when compared with randomly generated layouts.

Read more

Ready to get started?

Join us today