Featured Researches

Computation And Language

Enhancing Model Robustness By Incorporating Adversarial Knowledge Into Semantic Representation

Despite that deep neural networks (DNNs) have achieved enormous success in many domains like natural language processing (NLP), they have also been proven to be vulnerable to maliciously generated adversarial examples. Such inherent vulnerability has threatened various real-world deployed DNNs-based applications. To strength the model robustness, several countermeasures have been proposed in the English NLP domain and obtained satisfactory performance. However, due to the unique language properties of Chinese, it is not trivial to extend existing defenses to the Chinese domain. Therefore, we propose AdvGraph, a novel defense which enhances the robustness of Chinese-based NLP models by incorporating adversarial knowledge into the semantic representation of the input. Extensive experiments on two real-world tasks show that AdvGraph exhibits better performance compared with previous work: (i) effective - it significantly strengthens the model robustness even under the adaptive attacks setting without negative impact on model performance over legitimate input; (ii) generic - its key component, i.e., the representation of connotative adversarial knowledge is task-agnostic, which can be reused in any Chinese-based NLP models without retraining; and (iii) efficient - it is a light-weight defense with sub-linear computational complexity, which can guarantee the efficiency required in practical scenarios.

Read more
Computation And Language

Enhancing Sequence-to-Sequence Neural Lemmatization with External Resources

We propose a novel hybrid approach to lemmatization that enhances the seq2seq neural model with additional lemmas extracted from an external lexicon or a rule-based system. During training, the enhanced lemmatizer learns both to generate lemmas via a sequential decoder and copy the lemma characters from the external candidates supplied during run-time. Our lemmatizer enhanced with candidates extracted from the Apertium morphological analyzer achieves statistically significant improvements compared to baseline models not utilizing additional lemma information, achieves an average accuracy of 97.25% on a set of 23 UD languages, which is 0.55% higher than obtained with the Stanford Stanza model on the same set of languages. We also compare with other methods of integrating external data into lemmatization and show that our enhanced system performs considerably better than a simple lexicon extension method based on the Stanza system, and it achieves complementary improvements w.r.t. the data augmentation method.

Read more
Computation And Language

Enquire One's Parent and Child Before Decision: Fully Exploit Hierarchical Structure for Self-Supervised Taxonomy Expansion

Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.

Read more
Computation And Language

Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction

Entities, as the essential elements in relation extraction tasks, exhibit certain structure. In this work, we formulate such structure as distinctive dependencies between mention pairs. We then propose SSAN, which incorporates these structural dependencies within the standard self-attention mechanism and throughout the overall encoding stage. Specifically, we design two alternative transformation modules inside each self-attention building block to produce attentive biases so as to adaptively regularize its attention flow. Our experiments demonstrate the usefulness of the proposed entity structure and the effectiveness of SSAN. It significantly outperforms competitive baselines, achieving new state-of-the-art results on three popular document-level relation extraction datasets. We further provide ablation and visualization to show how the entity structure guides the model for better relation extraction. Our code is publicly available.

Read more
Computation And Language

Entity-level Factual Consistency of Abstractive Text Summarization

A key challenge for abstractive summarization is ensuring factual consistency of the generated summary with respect to the original document. For example, state-of-the-art models trained on existing datasets exhibit entity hallucination, generating names of entities that are not present in the source document. We propose a set of new metrics to quantify the entity-level factual consistency of generated summaries and we show that the entity hallucination problem can be alleviated by simply filtering the training data. In addition, we propose a summary-worthy entity classification task to the training process as well as a joint entity and summary generation approach, which yield further improvements in entity level metrics.

Read more
Computation And Language

Error-driven Pruning of Language Models for Virtual Assistants

Language models (LMs) for virtual assistants (VAs) are typically trained on large amounts of data, resulting in prohibitively large models which require excessive memory and/or cannot be used to serve user requests in real-time. Entropy pruning results in smaller models but with significant degradation of effectiveness in the tail of the user request distribution. We customize entropy pruning by allowing for a keep list of infrequent n-grams that require a more relaxed pruning threshold, and propose three methods to construct the keep list. Each method has its own advantages and disadvantages with respect to LM size, ASR accuracy and cost of constructing the keep list. Our best LM gives 8% average Word Error Rate (WER) reduction on a targeted test set, but is 3 times larger than the baseline. We also propose discriminative methods to reduce the size of the LM while retaining the majority of the WER gains achieved by the largest LM.

Read more
Computation And Language

Evaluate On-the-job Learning Dialogue Systems and a Case Study for Natural Language Understanding

On-the-job learning consists in continuously learning while being used in production, in an open environment, meaning that the system has to deal on its own with situations and elements never seen before. The kind of systems that seem to be especially adapted to on-the-job learning are dialogue systems, since they can take advantage of their interactions with users to collect feedback to adapt and improve their components over time. Some dialogue systems performing on-the-job learning have been built and evaluated but no general methodology has yet been defined. Thus in this paper, we propose a first general methodology for evaluating on-the-job learning dialogue systems. We also describe a task-oriented dialogue system which improves on-the-job its natural language component through its user interactions. We finally evaluate our system with the described methodology.

Read more
Computation And Language

Evaluating Contextualized Language Models for Hungarian

We present an extended comparison of contextualized language models for Hungarian. We compare huBERT, a Hungarian model against 4 multilingual models including the multilingual BERT model. We evaluate these models through three tasks, morphological probing, POS tagging and NER. We find that huBERT works better than the other models, often by a large margin, particularly near the global optimum (typically at the middle layers). We also find that huBERT tends to generate fewer subwords for one word and that using the last subword for token-level tasks is generally a better choice than using the first one.

Read more
Computation And Language

Evaluating Empathetic Chatbots in Customer Service Settings

Customer service is a setting that calls for empathy in live human agent responses. Recent advances have demonstrated how open-domain chatbots can be trained to demonstrate empathy when responding to live human utterances. We show that a blended skills chatbot model that responds to customer queries is more likely to resemble actual human agent response if it is trained to recognize emotion and exhibit appropriate empathy, than a model without such training. For our analysis, we leverage a Twitter customer service dataset containing several million customer<->agent dialog examples in customer service contexts from 20 well-known brands.

Read more
Computation And Language

Evaluating Models of Robust Word Recognition with Serial Reproduction

Spoken communication occurs in a "noisy channel" characterized by high levels of environmental noise, variability within and between speakers, and lexical and syntactic ambiguity. Given these properties of the received linguistic input, robust spoken word recognition -- and language processing more generally -- relies heavily on listeners' prior knowledge to evaluate whether candidate interpretations of that input are more or less likely. Here we compare several broad-coverage probabilistic generative language models in their ability to capture human linguistic expectations. Serial reproduction, an experimental paradigm where spoken utterances are reproduced by successive participants similar to the children's game of "Telephone," is used to elicit a sample that reflects the linguistic expectations of English-speaking adults. When we evaluate a suite of probabilistic generative language models against the yielded chains of utterances, we find that those models that make use of abstract representations of preceding linguistic context (i.e., phrase structure) best predict the changes made by people in the course of serial reproduction. A logistic regression model predicting which words in an utterance are most likely to be lost or changed in the course of spoken transmission corroborates this result. We interpret these findings in light of research highlighting the interaction of memory-based constraints and representations in language processing.

Read more

Ready to get started?

Join us today