Featured Researches

Image And Video Processing

Classification and understanding of cloud structures via satellite images with EfficientUNet

Climate change has been a common interest and the forefront of crucial political discussion and decision-making for many years. Shallow clouds play a significant role in understanding the Earth's climate, but they are challenging to interpret and represent in a climate model. By classifying these cloud structures, there is a better possibility of understanding the physical structures of the clouds, which would improve the climate model generation, resulting in a better prediction of climate change or forecasting weather update. Clouds organise in many forms, which makes it challenging to build traditional rule-based algorithms to separate cloud features. In this paper, classification of cloud organization patterns was performed using a new scaled-up version of Convolutional Neural Network (CNN) named as EfficientNet as the encoder and UNet as decoder where they worked as feature extractor and reconstructor of fine grained feature map and was used as a classifier, which will help experts to understand how clouds will shape the future climate. By using a segmentation model in a classification task, it was shown that with a good encoder alongside UNet, it is possible to obtain good performance from this dataset. Dice coefficient has been used for the final evaluation metric, which gave the score of 66.26\% and 66.02\% for public and private (test set) leaderboard on Kaggle competition respectively.

Read more
Image And Video Processing

Classification of Breast Cancer Lesions in Ultrasound Images by using Attention Layer and loss Ensembles in Deep Convolutional Neural Networks

Reliable classification of benign and malignant lesions in breast ultrasound images can provide an effective and relatively low cost method for early diagnosis of breast cancer. The accuracy of the diagnosis is however highly dependent on the quality of the ultrasound systems and the experience of the users (radiologists). The leverage in deep convolutional neural network approaches provided solutions in efficient analysis of breast ultrasound images. In this study, we proposed a new framework for classification of breast cancer lesions by use of an attention module in modified VGG16 architecture. We also proposed new ensembled loss function which is the combination of binary cross-entropy and logarithm of the hyperbolic cosine loss to improve the model discrepancy between classified lesions and its labels. Networks trained from pretrained ImageNet weights, and subsequently fine-tuned with ultrasound datasets. The proposed model in this study outperformed other modified VGG16 architectures with the accuracy of 93% and also the results are competitive with other state of the art frameworks for classification of breast cancer lesions. In this study, we employed transfer learning approaches with the pre-trained VGG16 architecture. Different CNN models for classification task were trained to predict benign or malignant lesions in breast ultrasound images. Our Experimental results show that the choice of loss function is highly important in classification task and by adding an attention block we could empower the performance our model.

Read more
Image And Video Processing

Classification of COVID-19 X-ray Images Using a Combination of Deep and Handcrafted Features

Coronavirus Disease 2019 (COVID-19) demonstrated the need for accurate and fast diagnosis methods for emergent viral diseases. Soon after the emergence of COVID-19, medical practitioners used X-ray and computed tomography (CT) images of patients' lungs to detect COVID-19. Machine learning methods are capable of improving the identification accuracy of COVID-19 in X-ray and CT images, delivering near real-time results, while alleviating the burden on medical practitioners. In this work, we demonstrate the efficacy of a support vector machine (SVM) classifier, trained with a combination of deep convolutional and handcrafted features extracted from X-ray chest scans. We use this combination of features to discriminate between healthy, common pneumonia, and COVID-19 patients. The performance of the combined feature approach is compared with a standard convolutional neural network (CNN) and the SVM trained with handcrafted features. We find that combining the features in our novel framework improves the performance of the classification task compared to the independent application of convolutional and handcrafted features. Specifically, we achieve an accuracy of 0.988 in the classification task with our combined approach compared to 0.963 and 0.983 accuracy for the handcrafted features with SVM and CNN respectively.

Read more
Image And Video Processing

Classification of COVID-19 in CT Scans using Multi-Source Transfer Learning

Since December of 2019, novel coronavirus disease COVID-19 has spread around the world infecting millions of people and upending the global economy. One of the driving reasons behind its high rate of infection is due to the unreliability and lack of RT-PCR testing. At times the turnaround results span as long as a couple of days, only to yield a roughly 70% sensitivity rate. As an alternative, recent research has investigated the use of Computer Vision with Convolutional Neural Networks (CNNs) for the classification of COVID-19 from CT scans. Due to an inherent lack of available COVID-19 CT data, these research efforts have been forced to leverage the use of Transfer Learning. This commonly employed Deep Learning technique has shown to improve model performance on tasks with relatively small amounts of data, as long as the Source feature space somewhat resembles the Target feature space. Unfortunately, a lack of similarity is often encountered in the classification of medical images as publicly available Source datasets usually lack the visual features found in medical images. In this study, we propose the use of Multi-Source Transfer Learning (MSTL) to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans. With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet. We additionally, propose an unsupervised label creation process, which enhances the performance of our Deep Residual Networks. Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.

Read more
Image And Video Processing

Classification of COVID-19 via Homology of CT-SCAN

In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" \citep{soares2020sars}, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of 99.42% , accuracy 99.416% , precision 99.41% , and recall 99.42% . The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.

Read more
Image And Video Processing

Classification of Shoulder X-Ray Images with Deep Learning Ensemble Models

Fractures occur in the shoulder area, which has a wider range of motion than other joints in the body, for various reasons. To diagnose these fractures, data gathered from Xradiation (X-ray), magnetic resonance imaging (MRI), or computed tomography (CT) are used. This study aims to help physicians by classifying shoulder images taken from X-ray devices as fracture / non-fracture with artificial intelligence. For this purpose, the performances of 26 deep learning-based pretrained models in the detection of shoulder fractures were evaluated on the musculoskeletal radiographs (MURA) dataset, and two ensemble learning models (EL1 and EL2) were developed. The pretrained models used are ResNet, ResNeXt, DenseNet, VGG, Inception, MobileNet, and their spinal fully connected (Spinal FC) versions. In the EL1 and EL2 models developed using pretrained models with the best performance, test accuracy was 0.8455,0.8472, Cohens kappa was 0.6907, 0.6942 and the area that was related with fracture class under the receiver operating characteristic (ROC) curve (AUC) was 0.8862,0.8695. As a result of 28 different classifications in total, the highest test accuracy and Cohens kappa values were obtained in the EL2 model, and the highest AUC value was obtained in the EL1 model.

Read more
Image And Video Processing

Cloud Removal for Remote Sensing Imagery via Spatial Attention Generative Adversarial Network

Optical remote sensing imagery has been widely used in many fields due to its high resolution and stable geometric properties. However, remote sensing imagery is inevitably affected by climate, especially clouds. Removing the cloud in the high-resolution remote sensing satellite image is an indispensable pre-processing step before analyzing it. For the sake of large-scale training data, neural networks have been successful in many image processing tasks, but the use of neural networks to remove cloud in remote sensing imagery is still relatively small. We adopt generative adversarial network to solve this task and introduce the spatial attention mechanism into the remote sensing imagery cloud removal task, proposes a model named spatial attention generative adversarial network (SpA GAN), which imitates the human visual mechanism, and recognizes and focuses the cloud area with local-to-global spatial attention, thereby enhancing the information recovery of these areas and generating cloudless images with better quality...

Read more
Image And Video Processing

CoIL: Coordinate-based Internal Learning for Imaging Inverse Problems

We propose Coordinate-based Internal Learning (CoIL) as a new deep-learning (DL) methodology for the continuous representation of measurements. Unlike traditional DL methods that learn a mapping from the measurements to the desired image, CoIL trains a multilayer perceptron (MLP) to encode the complete measurement field by mapping the coordinates of the measurements to their responses. CoIL is a self-supervised method that requires no training examples besides the measurements of the test object itself. Once the MLP is trained, CoIL generates new measurements that can be used within a majority of image reconstruction methods. We validate CoIL on sparse-view computed tomography using several widely-used reconstruction methods, including purely model-based methods and those based on DL. Our results demonstrate the ability of CoIL to consistently improve the performance of all the considered methods by providing high-fidelity measurement fields.

Read more
Image And Video Processing

Coarse-to-fine Airway Segmentation Using Multi information Fusion Network and CNN-based Region Growing

Automatic airway segmentation from chest computed tomography (CT) scans plays an important role in pulmonary disease diagnosis and computer-assisted therapy. However, low contrast at peripheral branches and complex tree-like structures remain as two mainly challenges for airway segmentation. Recent research has illustrated that deep learning methods perform well in segmentation tasks. Motivated by these works, a coarse-to-fine segmentation framework is proposed to obtain a complete airway tree. Our framework segments the overall airway and small branches via the multi-information fusion convolution neural network (Mif-CNN) and the CNN-based region growing, respectively. In Mif-CNN, atrous spatial pyramid pooling (ASPP) is integrated into a u-shaped network, and it can expend the receptive field and capture multi-scale information. Meanwhile, boundary and location information are incorporated into semantic information. These information are fused to help Mif-CNN utilize additional context knowledge and useful features. To improve the performance of the segmentation result, the CNN-based region growing method is designed to focus on obtaining small branches. A voxel classification network (VCN), which can entirely capture the rich information around each voxel, is applied to classify the voxels into airway and non-airway. In addition, a shape reconstruction method is used to refine the airway tree.

Read more
Image And Video Processing

Collaborative Intelligence: Challenges and Opportunities

This paper presents an overview of the emerging area of collaborative intelligence (CI). Our goal is to raise awareness in the signal processing community of the challenges and opportunities in this area of growing importance, where key developments are expected to come from signal processing and related disciplines. The paper surveys the current state of the art in CI, with special emphasis on signal processing-related challenges in feature compression, error resilience, privacy, and system-level design.

Read more

Ready to get started?

Join us today