Featured Researches

Image And Video Processing

Cutting-edge 3D Medical Image Segmentation Methods in 2020: Are Happy Families All Alike?

Segmentation is one of the most important and popular tasks in medical image analysis, which plays a critical role in disease diagnosis, surgical planning, and prognosis evaluation. During the past five years, on the one hand, thousands of medical image segmentation methods have been proposed for various organs and lesions in different medical images, which become more and more challenging to fairly compare different methods. On the other hand, international segmentation challenges can provide a transparent platform to fairly evaluate and compare different methods. In this paper, we present a comprehensive review of the top methods in ten 3D medical image segmentation challenges during 2020, covering a variety of tasks and datasets. We also identify the "happy-families" practices in the cutting-edge segmentation methods, which are useful for developing powerful segmentation approaches. Finally, we discuss open research problems that should be addressed in the future. We also maintain a list of cutting-edge segmentation methods at \url{this https URL}.

Read more
Image And Video Processing

D-Net: Siamese based Network with Mutual Attention for Volume Alignment

Alignment of contrast and non-contrast-enhanced imaging is essential for the quantification of changes in several biomedical applications. In particular, the extraction of cartilage shape from contrast-enhanced Computed Tomography (CT) of tibiae requires accurate alignment of the bone, currently performed manually. Existing deep learning-based methods for alignment require a common template or are limited in rotation range. Therefore, we present a novel network, D-net, to estimate arbitrary rotation and translation between 3D CT scans that additionally does not require a prior standard template. D-net is an extension to the branched Siamese encoder-decoder structure connected by new mutual non-local links, which efficiently capture long-range connections of similar features between two branches. The 3D supervised network is trained and validated using preclinical CT scans of mouse tibiae with and without contrast enhancement in cartilage. The presented results show a significant improvement in the estimation of CT alignment, outperforming the current comparable methods.

Read more
Image And Video Processing

D2A U-Net: Automatic Segmentation of COVID-19 Lesions from CT Slices with Dilated Convolution and Dual Attention Mechanism

Coronavirus Disease 2019 (COVID-19) has caused great casualties and becomes almost the most urgent public health events worldwide. Computed tomography (CT) is a significant screening tool for COVID-19 infection, and automated segmentation of lung infection in COVID-19 CT images will greatly assist diagnosis and health care of patients. However, accurate and automatic segmentation of COVID-19 lung infections remains to be challenging. In this paper we propose a dilated dual attention U-Net (D2A U-Net) for COVID-19 lesion segmentation in CT slices based on dilated convolution and a novel dual attention mechanism to address the issues above. We introduce a dilated convolution module in model decoder to achieve large receptive field, which refines decoding process and contributes to segmentation accuracy. Also, we present a dual attention mechanism composed of two attention modules which are inserted to skip connection and model decoder respectively. The dual attention mechanism is utilized to refine feature maps and reduce semantic gap between different levels of the model. The proposed method has been evaluated on open-source dataset and outperforms cutting edges methods in semantic segmentation. Our proposed D2A U-Net with pretrained encoder achieves a Dice score of 0.7298 and recall score of 0.7071. Besides, we also build a simplified D2A U-Net without pretrained encoder to provide a fair comparison with other models trained from scratch, which still outperforms popular U-Net family models with a Dice score of 0.7047 and recall score of 0.6626. Our experiment results have shown that by introducing dilated convolution and dual attention mechanism, the number of false positives is significantly reduced, which improves sensitivity to COVID-19 lesions and subsequently brings significant increase to Dice score.

Read more
Image And Video Processing

DAEs for Linear Inverse Problems: Improved Recovery with Provable Guarantees

Generative priors have been shown to provide improved results over sparsity priors in linear inverse problems. However, current state of the art methods suffer from one or more of the following drawbacks: (a) speed of recovery is slow; (b) reconstruction quality is deficient; (c) reconstruction quality is contingent on a computationally expensive process of tuning hyperparameters. In this work, we address these issues by utilizing Denoising Auto Encoders (DAEs) as priors and a projected gradient descent algorithm for recovering the original signal. We provide rigorous theoretical guarantees for our method and experimentally demonstrate its superiority over existing state of the art methods in compressive sensing, inpainting, and super-resolution. We find that our algorithm speeds up recovery by two orders of magnitude (over 100x), improves quality of reconstruction by an order of magnitude (over 10x), and does not require tuning hyperparameters.

Read more
Image And Video Processing

DARWIN: A Highly Flexible Platform for Imaging Research in Radiology

To conduct a radiomics or deep learning research experiment, the radiologists or physicians need to grasp the needed programming skills, which, however, could be frustrating and costly when they have limited coding experience. In this paper, we present DARWIN, a flexible research platform with a graphical user interface for medical imaging research. Our platform is consists of a radiomics module and a deep learning module. The radiomics module can extract more than 1000 dimension features(first-, second-, and higher-order) and provided many draggable supervised and unsupervised machine learning models. Our deep learning module integrates state of the art architectures of classification, detection, and segmentation tasks. It allows users to manually select hyperparameters, or choose an algorithm to automatically search for the best ones. DARWIN also offers the possibility for users to define a custom pipeline for their experiment. These flexibilities enable radiologists to carry out various experiments easily.

Read more
Image And Video Processing

DEEPMIR: A DEEP neural network for differential detection of cerebral Microbleeds and IRon deposits in MRI

Lobar cerebral microbleeds (CMBs) and localized non-hemorrhage iron deposits in the basal ganglia have been associated with brain aging, vascular disease and neurodegenerative disorders. Particularly, CMBs are small lesions and require multiple neuroimaging modalities for accurate detection. Quantitative susceptibility mapping (QSM) derived from in vivo magnetic resonance imaging (MRI) is necessary to differentiate between iron content and mineralization. We set out to develop a deep learning-based segmentation method suitable for segmenting both CMBs and iron deposits. We included a convenience sample of 24 participants from the MESA cohort and used T2-weighted images, susceptibility weighted imaging (SWI), and QSM to segment the two types of lesions. We developed a protocol for simultaneous manual annotation of CMBs and non-hemorrhage iron deposits in the basal ganglia. This manual annotation was then used to train a deep convolution neural network (CNN). Specifically, we adapted the U-Net model with a higher number of resolution layers to be able to detect small lesions such as CMBs from standard resolution MRI. We tested different combinations of the three modalities to determine the most informative data sources for the detection tasks. In the detection of CMBs using single class and multiclass models, we achieved an average sensitivity and precision of between 0.84-0.88 and 0.40-0.59, respectively. The same framework detected non-hemorrhage iron deposits with an average sensitivity and precision of about 0.75-0.81 and 0.62-0.75, respectively. Our results showed that deep learning could automate the detection of small vessel disease lesions and including multimodal MR data (particularly QSM) can improve the detection of CMB and non-hemorrhage iron deposits with sensitivity and precision that is compatible with use in large-scale research studies.

Read more
Image And Video Processing

DIFFnet: Diffusion parameter mapping network generalized for input diffusion gradient schemes and bvalues

In MRI, deep neural networks have been proposed to reconstruct diffusion model parameters. However, the inputs of the networks were designed for a specific diffusion gradient scheme (i.e., diffusion gradient directions and numbers) and a specific b-value that are the same as the training data. In this study, a new deep neural network, referred to as DIFFnet, is developed to function as a generalized reconstruction tool of the diffusion-weighted signals for various gradient schemes and b-values. For generalization, diffusion signals are normalized in a q-space and then projected and quantized, producing a matrix (Qmatrix) as an input for the network. To demonstrate the validity of this approach, DIFFnet is evaluated for diffusion tensor imaging (DIFFnetDTI) and for neurite orientation dispersion and density imaging (DIFFnetNODDI). In each model, two datasets with different gradient schemes and b-values are tested. The results demonstrate accurate reconstruction of the diffusion parameters at substantially reduced processing time (approximately 8.7 times and 2240 times faster processing time than conventional methods in DTI and NODDI, respectively; less than 4% mean normalized root-mean-square errors (NRMSE) in DTI and less than 8% in NODDI). The generalization capability of the networks was further validated using reduced numbers of diffusion signals from the datasets. Different from previously proposed deep neural networks, DIFFnet does not require any specific gradient scheme and b-value for its input. As a result, it can be adopted as an online reconstruction tool for various complex diffusion imaging.

Read more
Image And Video Processing

DPN: Detail-Preserving Network with High Resolution Representation for Efficient Segmentation of Retinal Vessels

Retinal vessels are important biomarkers for many ophthalmological and cardiovascular diseases. It is of great significance to develop an accurate and fast vessel segmentation model for computer-aided diagnosis. Existing methods, such as U-Net follows the encoder-decoder pipeline, where detailed information is lost in the encoder in order to achieve a large field of view. Although detailed information could be recovered in the decoder via multi-scale fusion, it still contains noise. In this paper, we propose a deep segmentation model, called detail-preserving network (DPN) for efficient vessel segmentation. To preserve detailed spatial information and learn structural information at the same time, we designed the detail-preserving block (DP-Block). Further, we stacked eight DP-Blocks together to form the DPN. More importantly, there are no down-sampling operations among these blocks. As a result, the DPN could maintain a high resolution during the processing, which is helpful to locate the boundaries of thin vessels. To illustrate the effectiveness of our method, we conducted experiments over three public datasets. Experimental results show, compared to state-of-the-art methods, our method shows competitive/better performance in terms of segmentation accuracy, segmentation speed, extensibility and the number of parameters. Specifically, 1) the AUC of our method ranks first/second/third on the STARE/CHASE_DB1/DRIVE datasets, respectively. 2) Only one forward pass is required of our method to generate a vessel segmentation map, and the segmentation speed of our method is over 20-160x faster than other methods on the DRIVE dataset. 3) We conducted cross-training experiments to demonstrate the extensibility of our method, and results revealed that our method shows superior performance. 4) The number of parameters of our method is only around 96k, less then all comparison methods.

Read more
Image And Video Processing

Deep Anti-aliasing of Whole Focal Stack Using its Slice Spectrum

The paper aims at removing the aliasing effects for the whole focal stack generated from a sparse 3D light field, while keeping the consistency across all the focal layers.We first explore the structural characteristics embedded in the focal stack slice and its corresponding frequency-domain representation, i.e., the focal stack spectrum (FSS). We also observe that the energy distribution of FSS always locates within the same triangular area under different angular sampling rates, additionally the continuity of point spread function (PSF) is intrinsically maintained in the FSS. Based on these two findings, we propose a learning-based FSS reconstruction approach for one-time aliasing removing over the whole focal stack. What's more, a novel conjugate-symmetric loss function is proposed for the optimization. Compared to previous works, our method avoids an explicit depth estimation, and can handle challenging large-disparity scenarios. Experimental results on both synthetic and real light field datasets show the superiority of the proposed approach for different scenes and various angular sampling rates.

Read more
Image And Video Processing

Deep Artifact-Free Residual Network for Single Image Super-Resolution

Recently, convolutional neural networks have shown promising performance for single-image super-resolution. In this paper, we propose Deep Artifact-Free Residual (DAFR) network which uses the merits of both residual learning and usage of ground-truth image as target. Our framework uses a deep model to extract the high-frequency information which is necessary for high-quality image reconstruction. We use a skip-connection to feed the low-resolution image to the network before the image reconstruction. In this way, we are able to use the ground-truth images as target and avoid misleading the network due to artifacts in difference image. In order to extract clean high-frequency information, we train the network in two steps. The first step is a traditional residual learning which uses the difference image as target. Then, the trained parameters of this step are transferred to the main training in the second step. Our experimental results show that the proposed method achieves better quantitative and qualitative image quality compared to the existing methods.

Read more

Ready to get started?

Join us today