Featured Researches

Image And Video Processing

Constrained Non-Linear Phase Retrieval for Single Distance X-ray Phase Contrast Tomography

X-ray phase contrast tomography (XPCT) is widely used for 3D imaging of objects with weak contrast in X-ray absorption index but strong contrast in refractive index decrement. To reconstruct an object imaged using XPCT, phase retrieval algorithms are first used to estimate the X-ray phase projections, which is the 2D projection of the refractive index decrement, at each view. Phase retrieval is followed by refractive index decrement reconstruction from the phase projections using an algorithm such as filtered back projection (FBP). In practice, phase retrieval is most commonly solved by approximating it as a linear inverse problem. However, this linear approximation often results in artifacts and blurring when the conditions for the approximation are violated. In this paper, we formulate phase retrieval as a non-linear inverse problem, where we solve for the transmission function, which is the negative exponential of the projections, from XPCT measurements. We use a constraint to enforce proportionality between phase and absorption projections. We do not use constraints such as large Fresnel number, slowly varying phase, or Born/Rytov approximations. Our approach also does not require any regularization parameter tuning since there is no explicit sparsity enforcing regularization function. We validate the performance of our non-linear phase retrieval (NLPR) method using both simulated and real synchrotron datasets. We compare NLPR with a popular linear phase retrieval (LPR) approach and show that NLPR achieves sharper reconstructions with higher quantitative accuracy.

Read more
Image And Video Processing

Contextual colorization and denoising for low-light ultra high resolution sequences

Low-light image sequences generally suffer from spatio-temporal incoherent noise, flicker and blurring of moving objects. These artefacts significantly reduce visual quality and, in most cases, post-processing is needed in order to generate acceptable quality. Most state-of-the-art enhancement methods based on machine learning require ground truth data but this is not usually available for naturally captured low light sequences. We tackle these problems with an unpaired-learning method that offers simultaneous colorization and denoising. Our approach is an adaptation of the CycleGAN structure. To overcome the excessive memory limitations associated with ultra high resolution content, we propose a multiscale patch-based framework, capturing both local and contextual features. Additionally, an adaptive temporal smoothing technique is employed to remove flickering artefacts. Experimental results show that our method outperforms existing approaches in terms of subjective quality and that it is robust to variations in brightness levels and noise.

Read more
Image And Video Processing

Convolution Neural Networks for diagnosing colon and lung cancer histopathological images

Lung and Colon cancer are one of the leading causes of mortality and morbidity in adults. Histopathological diagnosis is one of the key components to discern cancer type. The aim of the present research is to propose a computer aided diagnosis system for diagnosing squamous cell carcinomas and adenocarcinomas of lung as well as adenocarcinomas of colon using convolutional neural networks by evaluating the digital pathology images for these cancers. Hereby, rendering artificial intelligence as useful technology in the near future. A total of 2500 digital images were acquired from LC25000 dataset containing 5000 images for each class. A shallow neural network architecture was used classify the histopathological slides into squamous cell carcinomas, adenocarcinomas and benign for the lung. Similar model was used to classify adenocarcinomas and benign for colon. The diagnostic accuracy of more than 97% and 96% was recorded for lung and colon respectively.

Read more
Image And Video Processing

Convolution-Free Medical Image Segmentation using Transformers

Like other applications in computer vision, medical image segmentation has been most successfully addressed using deep learning models that rely on the convolution operation as their main building block. Convolutions enjoy important properties such as sparse interactions, weight sharing, and translation equivariance. These properties give convolutional neural networks (CNNs) a strong and useful inductive bias for vision tasks. In this work we show that a different method, based entirely on self-attention between neighboring image patches and without any convolution operations, can achieve competitive or better results. Given a 3D image block, our network divides it into n 3 3D patches, where n=3 or 5 and computes a 1D embedding for each patch. The network predicts the segmentation map for the center patch of the block based on the self-attention between these patch embeddings. We show that the proposed model can achieve segmentation accuracies that are better than the state of the art CNNs on three datasets. We also propose methods for pre-training this model on large corpora of unlabeled images. Our experiments show that with pre-training the advantage of our proposed network over CNNs can be significant when labeled training data is small.

Read more
Image And Video Processing

CovTANet: A Hybrid Tri-level Attention Based Network for Lesion Segmentation, Diagnosis, and Severity Prediction of COVID-19 Chest CT Scans

Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this paper, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multi-phase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely Tri-level Attention-based Segmentation Network (TA-SegNet). This network has significantly reduced semantic gaps in subsequent encoding decoding stages, with immense parallelization of multi-scale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature re-calibration and enhancement operations. Outstanding performances have been achieved in all three-tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes that signifies the effectiveness of the proposed scheme at the current stage of the pandemic.

Read more
Image And Video Processing

Covariance Estimation from Compressive Data Partitions using a Projected Gradient-based Algorithm

Covariance matrix estimation techniques require high acquisition costs that challenge the sampling systems' storing and transmission capabilities. For this reason, various acquisition approaches have been developed to simultaneously sense and compress the relevant information of the signal using random projections. However, estimating the covariance matrix from the random projections is an ill-posed problem that requires further information about the data, such as sparsity, low rank, or stationary behavior. Furthermore, this approach fails using high compression ratios. Therefore, this paper proposes an algorithm based on the projected gradient method to recover a low-rank or Toeplitz approximation of the covariance matrix. The proposed algorithm divides the data into subsets projected onto different subspaces, assuming that each subset contains an approximation of the signal statistics, improving the inverse problem's condition. The error induced by this assumption is analytically derived along with the convergence guarantees of the proposed method. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images with high compression ratios (8-15% approx) in noisy scenarios. Additionally, simulations and theoretical results show that filtering the gradient reduces the estimator's error recovering up to twice the number of eigenvectors.

Read more
Image And Video Processing

Covid-19 classification with deep neural network and belief functions

Computed tomography (CT) image provides useful information for radiologists to diagnose Covid-19. However, visual analysis of CT scans is time-consuming. Thus, it is necessary to develop algorithms for automatic Covid-19 detection from CT images. In this paper, we propose a belief function-based convolutional neural network with semi-supervised training to detect Covid-19 cases. Our method first extracts deep features, maps them into belief degree maps and makes the final classification decision. Our results are more reliable and explainable than those of traditional deep learning-based classification models. Experimental results show that our approach is able to achieve a good performance with an accuracy of 0.81, an F1 of 0.812 and an AUC of 0.875.

Read more
Image And Video Processing

Cranial Implant Design via Virtual Craniectomy with Shape Priors

Cranial implant design is a challenging task, whose accuracy is crucial in the context of cranioplasty procedures. This task is usually performed manually by experts using computer-assisted design software. In this work, we propose and evaluate alternative automatic deep learning models for cranial implant reconstruction from CT images. The models are trained and evaluated using the database released by the AutoImplant challenge, and compared to a baseline implemented by the organizers. We employ a simulated virtual craniectomy to train our models using complete skulls, and compare two different approaches trained with this procedure. The first one is a direct estimation method based on the UNet architecture. The second method incorporates shape priors to increase the robustness when dealing with out-of-distribution implant shapes. Our direct estimation method outperforms the baselines provided by the organizers, while the model with shape priors shows superior performance when dealing with out-of-distribution cases. Overall, our methods show promising results in the difficult task of cranial implant design.

Read more
Image And Video Processing

Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement

Designing of a cranial implant needs a 3D understanding of the complete skull shape. Thus, taking a 2D approach is sub-optimal, since a 2D model lacks a holistic 3D view of both the defective and healthy skulls. Further, loading the whole 3D skull shapes at its original image resolution is not feasible in commonly available GPUs. To mitigate these issues, we propose a fully convolutional network composed of two subnetworks. The first subnetwork is designed to complete the shape of the downsampled defective skull. The second subnetwork upsamples the reconstructed shape slice-wise. We train the 3D and 2D networks together end-to-end, with a hierarchical loss function. Our proposed solution accurately predicts a high-resolution 3D implant in the challenge test case in terms of dice-score and the Hausdorff distance.

Read more
Image And Video Processing

CryoNuSeg: A Dataset for Nuclei Instance Segmentation of Cryosectioned H&E-Stained Histological Images

Nuclei instance segmentation plays an important role in the analysis of Hematoxylin and Eosin (H&E)-stained images. While supervised deep learning (DL)-based approaches represent the state-of-the-art in automatic nuclei instance segmentation, annotated datasets are required to train these models. There are two main types of tissue processing protocols, namely formalin-fixed paraffin-embedded samples (FFPE) and frozen tissue samples (FS). Although FFPE-derived H&E stained tissue sections are the most widely used samples, H&E staining on frozen sections derived from FS samples is a relevant method in intra-operative surgical sessions as it can be performed fast. Due to differences in the protocols of these two types of samples, the derived images and in particular the nuclei appearance may be different in the acquired whole slide images. Analysis of FS-derived H&E stained images can be more challenging as rapid preparation, staining, and scanning of FS sections may lead to deterioration in image quality. In this paper, we introduce CryoNuSeg, the first fully annotated FS-derived cryosectioned and H&E-stained nuclei instance segmentation dataset. The dataset contains images from 10 human organs that were not exploited in other publicly available datasets, and is provided with three manual mark-ups to allow measuring intra-observer and inter-observer variability. Moreover, we investigate the effects of tissue fixation/embedding protocol (i.e., FS or FFPE) on the automatic nuclei instance segmentation performance of one of the state-of-the-art DL approaches. We also create a baseline segmentation benchmark for the dataset that can be used in future research. A step-by-step guide to generate the dataset as well as the full dataset and other detailed information are made available to fellow researchers at this https URL.

Read more

Ready to get started?

Join us today