Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Vecchione is active.

Publication


Featured researches published by T. Vecchione.


Review of Scientific Instruments | 2015

Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

Stephen Weathersby; Garth Brown; Martin Centurion; T. Chase; Ryan Coffee; Jeff Corbett; John Eichner; J. Frisch; Alan Fry; Markus Gühr; Nick Hartmann; C. Hast; Robert Hettel; Renee K. Jobe; Erik N. Jongewaard; James Lewandowski; Renkai Li; Aaron M. Lindenberg; Igor Makasyuk; Justin E. May; D. McCormick; M. N. Nguyen; A. H. Reid; Xiaozhe Shen; Klaus Sokolowski-Tinten; T. Vecchione; Sharon Vetter; J. Wu; Jie Yang; Hermann A. Dürr

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.


Nature Communications | 2016

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

Jie Yang; Markus Guehr; T. Vecchione; Matthew S. Robinson; Renkai Li; Nick Hartmann; Xiaozhe Shen; Ryan Coffee; Jeff Corbett; Alan Fry; Kelly J. Gaffney; Tais Gorkhover; C. Hast; K. Jobe; Igor Makasyuk; A. H. Reid; Joseph P. Robinson; Sharon Vetter; Fenglin Wang; Stephen Weathersby; Charles Yoneda; Martin Centurion; Xijie Wang

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.


Nano Letters | 2015

Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction

Ehren M. Mannebach; Renkai Li; Karel-Alexander N. Duerloo; Clara Nyby; Peter Zalden; T. Vecchione; Friederike Ernst; A. H. Reid; T. Chase; Xiaozhe Shen; Stephen Weathersby; C. Hast; Robert Hettel; Ryan Coffee; Nick Hartmann; Alan Fry; Yifei Yu; Linyou Cao; Tony F. Heinz; Evan J. Reed; Hermann A. Dürr; Xijie Wang; Aaron M. Lindenberg

Two-dimensional materials are subject to intrinsic and dynamic rippling that modulates their optoelectronic and electromechanical properties. Here, we directly visualize the dynamics of these processes within monolayer transition metal dichalcogenide MoS2 using femtosecond electron scattering techniques as a real-time probe with atomic-scale resolution. We show that optical excitation induces large-amplitude in-plane displacements and ultrafast wrinkling of the monolayer on nanometer length-scales, developing on picosecond time-scales. These deformations are associated with several percent peak strains that are fully reversible over tens of millions of cycles. Direct measurements of electron-phonon coupling times and the subsequent interfacial thermal heat flow between the monolayer and substrate are also obtained. These measurements, coupled with first-principles modeling, provide a new understanding of the dynamic structural processes that underlie the functionality of two-dimensional materials and open up new opportunities for ultrafast strain engineering using all-optical methods.


Applied Physics Letters | 2016

Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

T. Chase; M. Trigo; A. H. Reid; Renkai Li; T. Vecchione; Xiaozhe Shen; Stephen Weathersby; Ryan Coffee; Nick Hartmann; David A. Reis; Xijie Wang; Hermann A. Dürr

We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.


Review of Scientific Instruments | 2015

A novel system for measurement of the transverse electron momentum distribution from photocathodes

J. Feng; J. Nasiatka; Weishi Wan; T. Vecchione; Howard A. Padmore

The transverse momentum of electrons produced by a photocathode contributes significantly to the performance of several different types of accelerator-based light sources, such as Free Electron Lasers, as well as systems designed for ultrafast electron diffraction and dynamic transmission electron microscopy. Minimization of the transverse emittance from photocathodes is the subject of intensive research, and therefore measurement of this parameter is of great importance. Here, we describe a simple system that offers real time measurements of transverse emittance and can be easily integrated into the photocathode fabrication process.


Nature Communications | 2018

Beyond a phenomenological description of magnetostriction

A. H. Reid; Xiaozhe Shen; Pablo Maldonado; T. Chase; E. Jal; P. W. Granitzka; Karel Carva; Renkai Li; Jing Li; Lijun Wu; T. Vecchione; T. Liu; Zhuoyu Chen; D. J. Higley; Nick Hartmann; Ryan Coffee; J. Wu; Georgi L. Dakovski; W. F. Schlotter; Hendrik Ohldag; Y. K. Takahashi; V. Mehta; O. Hellwig; Alan Fry; Yimei Zhu; J. Cao; Eric E. Fullerton; J. Stöhr; Peter M. Oppeneer; Xijie Wang

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction—the underlying magnetoelastic stress—can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.Although magnetostriction is universal in magnetic materials, understanding its microscopic origin remains challenging. Here the authors use X-ray and ultrafast electron diffraction to separate the material’s sub-picosecond spin and lattice responses and reveal the magnetoelastic stress generated by demagnetization.


Structural Dynamics | 2017

Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

Klaus Sokolowski-Tinten; Xiaozhe Shen; Qiang Zheng; T. Chase; Ryan Coffee; M. Jerman; Renkai Li; M. Ligges; Igor Makasyuk; M. Z. Mo; A. H. Reid; B. Rethfeld; T. Vecchione; Stephen Weathersby; Hermann A. Dürr; Xijie Wang

We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.


Structural Dynamics | 2017

Stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS2 probed with MeV ultrafast electron diffraction

L. Le Guyader; T. Chase; A. H. Reid; Renkai Li; D. Svetin; Xiaozhe Shen; T. Vecchione; Xijie Wang; D. Mihailovic; Hermann A. Dürr

Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.


Review of Scientific Instruments | 2017

A direct electron detector for time-resolved MeV electron microscopy

T. Vecchione; Peter Denes; R.K. Jobe; I. J. Johnson; John Joseph; Renkai Li; A. Perazzo; Xiaozhe Shen; Xijie Wang; Stephen Weathersby; Jie Yang; D. Zhang

The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.


Nature Communications | 2018

Publisher Correction : Beyond a phenomenological description of magnetostriction

A. H. Reid; Xiaozhe Shen; Pablo Maldonado; T. Chase; Emmanuelle Jal; Patrick Granitzka; Karel Carva; Renkai Li; Jing Li; Lijun Wu; T. Vecchione; T. Liu; Zhuoyu Chen; D. J. Higley; Nick Hartmann; Ryan Coffee; J. Wu; G. L. Dakowski; W. F. Schlotter; Hendrik Ohldag; Y. K. Takahashi; Virat Mehta; Olav Hellwig; Alan Fry; Yimei Zhu; J. Cao; Eric E. Fullerton; J. Stöhr; Peter M. Oppeneer; Xijie Wang

“The technical support from SLAC Accelerator Directorate, Technology Innovation Directorate, LCLS laser division and Test Facility Division is gratefully acknowledged. We thank S.P. Weathersby, R.K. Jobe, D. McCormick, A. Mitra, S. Carron and J. Corbett for their invaluable help and technical assistance. Research at SLAC was supported through the SIMES Institute which like the LCLS and SSRL user facilities is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The UED work was performed at SLAC MeV-UED, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the LCLS Facility, and SLAC under contract Nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.”and“Work at BNL was supported by DOE BES Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886. J.C. would like to acknowledge the support from National Science Foundation Grant No. 1207252. E.E.F. would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678.”This has been corrected in both the PDF and HTML versions of the Article.

Collaboration


Dive into the T. Vecchione's collaboration.

Top Co-Authors

Avatar

Renkai Li

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Weathersby

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xiaozhe Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xijie Wang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nick Hartmann

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ryan Coffee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. H. Reid

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan Fry

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeff Corbett

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jie Yang

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge