Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Weathersby is active.

Publication


Featured researches published by Stephen Weathersby.


Review of Scientific Instruments | 2015

Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

Stephen Weathersby; Garth Brown; Martin Centurion; T. Chase; Ryan Coffee; Jeff Corbett; John Eichner; J. Frisch; Alan Fry; Markus Gühr; Nick Hartmann; C. Hast; Robert Hettel; Renee K. Jobe; Erik N. Jongewaard; James Lewandowski; Renkai Li; Aaron M. Lindenberg; Igor Makasyuk; Justin E. May; D. McCormick; M. N. Nguyen; A. H. Reid; Xiaozhe Shen; Klaus Sokolowski-Tinten; T. Vecchione; Sharon Vetter; J. Wu; Jie Yang; Hermann A. Dürr

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.


Nature Communications | 2016

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

Jie Yang; Markus Guehr; T. Vecchione; Matthew S. Robinson; Renkai Li; Nick Hartmann; Xiaozhe Shen; Ryan Coffee; Jeff Corbett; Alan Fry; Kelly J. Gaffney; Tais Gorkhover; C. Hast; K. Jobe; Igor Makasyuk; A. H. Reid; Joseph P. Robinson; Sharon Vetter; Fenglin Wang; Stephen Weathersby; Charles Yoneda; Martin Centurion; Xijie Wang

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.


Nano Letters | 2015

Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction

Ehren M. Mannebach; Renkai Li; Karel-Alexander N. Duerloo; Clara Nyby; Peter Zalden; T. Vecchione; Friederike Ernst; A. H. Reid; T. Chase; Xiaozhe Shen; Stephen Weathersby; C. Hast; Robert Hettel; Ryan Coffee; Nick Hartmann; Alan Fry; Yifei Yu; Linyou Cao; Tony F. Heinz; Evan J. Reed; Hermann A. Dürr; Xijie Wang; Aaron M. Lindenberg

Two-dimensional materials are subject to intrinsic and dynamic rippling that modulates their optoelectronic and electromechanical properties. Here, we directly visualize the dynamics of these processes within monolayer transition metal dichalcogenide MoS2 using femtosecond electron scattering techniques as a real-time probe with atomic-scale resolution. We show that optical excitation induces large-amplitude in-plane displacements and ultrafast wrinkling of the monolayer on nanometer length-scales, developing on picosecond time-scales. These deformations are associated with several percent peak strains that are fully reversible over tens of millions of cycles. Direct measurements of electron-phonon coupling times and the subsequent interfacial thermal heat flow between the monolayer and substrate are also obtained. These measurements, coupled with first-principles modeling, provide a new understanding of the dynamic structural processes that underlie the functionality of two-dimensional materials and open up new opportunities for ultrafast strain engineering using all-optical methods.


Applied Physics Letters | 2016

Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

T. Chase; M. Trigo; A. H. Reid; Renkai Li; T. Vecchione; Xiaozhe Shen; Stephen Weathersby; Ryan Coffee; Nick Hartmann; David A. Reis; Xijie Wang; Hermann A. Dürr

We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.


Science | 2018

Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction

Jie Yang; Xiaolei Zhu; Thomas Wolf; Zheng Li; J. Pedro F. Nunes; Ryan Coffee; James Cryan; Markus Gühr; Kareem Hegazy; Tony F. Heinz; K. Jobe; Renkai Li; Xiaozhe Shen; Theodore Veccione; Stephen Weathersby; Kyle J. Wilkin; Charles Yoneda; Qiang Zheng; Todd J. Martínez; Martin Centurion; Xijie Wang

Motion picture of a conical intersection In most chemical reactions, electrons move earlier and faster than nuclei. It is therefore common to model reactions by using potential energy surfaces that depict nuclear motion in a particular electronic state. However, in certain cases, two such surfaces connect in a conical intersection that mingles ultrafast electronic and nuclear rearrangements. Yang et al. used electron diffraction to obtain time-resolved images of CF3I molecules traversing a conical intersection in the course of photolytic cleavage of the C–I bond (see the Perspective by Fielding). Science, this issue p. 64; see also p. 30 Electron diffraction reveals the interplay of electronic and nuclear motion during light-induced scission of a C–I bond. Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.


Structural Dynamics | 2017

Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

Klaus Sokolowski-Tinten; Xiaozhe Shen; Qiang Zheng; T. Chase; Ryan Coffee; M. Jerman; Renkai Li; M. Ligges; Igor Makasyuk; M. Z. Mo; A. H. Reid; B. Rethfeld; T. Vecchione; Stephen Weathersby; Hermann A. Dürr; Xijie Wang

We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.


Review of Scientific Instruments | 2016

Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

M. Z. Mo; Xiaozhe Shen; Zhuoyu Chen; Renkai Li; M. Dunning; Klaus Sokolowski-Tinten; Qiang Zheng; Stephen Weathersby; A. H. Reid; Ryan Coffee; Igor Makasyuk; S. Edstrom; D. McCormick; K. Jobe; C. Hast; S. H. Glenzer; Xijie Wang

We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.


Review of Scientific Instruments | 2017

A direct electron detector for time-resolved MeV electron microscopy

T. Vecchione; Peter Denes; R.K. Jobe; I. J. Johnson; John Joseph; Renkai Li; A. Perazzo; Xiaozhe Shen; Xijie Wang; Stephen Weathersby; Jie Yang; D. Zhang

The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.


Science Advances | 2018

Ultrafast manipulation of mirror domain walls in a charge density wave

Alfred Zong; Xiaozhe Shen; Anshul Kogar; Linda Ye; Carolyn Marks; Debanjan Chowdhury; Timm Rohwer; Byron Freelon; Stephen Weathersby; Renkai Li; Jie Yang; Joseph G. Checkelsky; Xijie Wang; Nuh Gedik

Topological defects, potential information carriers, were written into and erased from a solid with femtosecond light pulses. Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photoinjected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light.


Review of Scientific Instruments | 2018

Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction

M. Z. Mo; V. Becker; Benjamin K. Ofori-Okai; Xiaozhe Shen; Z. Chen; B. B. L. Witte; R. Redmer; Renkai Li; M. Dunning; Stephen Weathersby; Xijie Wang; S. H. Glenzer

Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. Here we report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.

Collaboration


Dive into the Stephen Weathersby's collaboration.

Top Co-Authors

Avatar

Xiaozhe Shen

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Renkai Li

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xijie Wang

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Vecchione

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ryan Coffee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Yang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

K. Jobe

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. H. Reid

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge