Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Staley is active.

Publication


Featured researches published by A. Staley.


Physical Review Letters | 2015

Observation of Parametric Instability in Advanced LIGO

M. Evans; Slawek Gras; P. Fritschel; John B. Miller; L. Barsotti; D. V. Martynov; A. F. Brooks; D. C. Coyne; R. Abbott; R. Adhikari; Koji Arai; Rolf Bork; Bill Kells; J. G. Rollins; N. D. Smith-Lefebvre; G. Vajente; Hiroaki Yamamoto; C. Adams; S. M. Aston; Joseph Betzweiser; V. V. Frolov; Adam Mullavey; A. Pele; J. H. Romie; M. Thomas; Keith Thorne; S. Dwyer; K. Izumi; Keita Kawabe; D. Sigg

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.


Classical and Quantum Gravity | 2014

Achieving resonance in the Advanced LIGO gravitational-wave interferometer

A. Staley; D. V. Martynov; R. Abbott; R. Adhikari; K. Arai; S. Ballmer; L. Barsotti; A. F. Brooks; R. T. Derosa; S. Dwyer; A. Effler; M. Evans; P. Fritschel; V. V. Frolov; C. Gray; C. Guido; R. Gustafson; M. C. Heintze; D. Hoak; K. Izumi; K. Kawabe; E. J. King; J. S. Kissel; K. Kokeyama; M. Landry; D. E. McClelland; J. Miller; A. Mullavey; B OʼReilly; J. G. Rollins

Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only _(~1) Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.


Optics Express | 2015

High precision optical cavity length and width measurements using double modulation

A. Staley; D. Hoak; A. Effler; K. Izumi; S. Dwyer; K. Kawabe; E. J. King; M. Rakhmanov; R. L. Savage; D. Sigg

We use doubly phase modulated light to measure both the length and the linewidth of an optical resonator with high precision. The first modulation is at RF frequencies and is set near a multiple of the free spectral range, whereas the second modulation is at audio frequencies to eliminate offset errors at DC. The light in transmission or in reflection of the optical resonator is demodulated while sweeping the RF frequency over the optical resonance. We derive expressions for the demodulated power in transmission, and show that the zero crossings of the demodulated signal in transmission serve as a precise measure of the cavity linewidth at half maximum intensity. We demonstrate the technique on two resonant cavities, with lengths 16 m and a 4 km, and achieve an absolute length accuracy as low as 70 ppb. The cavity width for the 16 m cavity was determined with an accuracy of approximately 6000 ppm. Through an analysis of the systematic errors we show that this result could be substantially improved with the reduction of technical sources of uncertainty.

Collaboration


Dive into the A. Staley's collaboration.

Top Co-Authors

Avatar

A. Effler

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. F. Brooks

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Hoak

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

D. V. Martynov

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. G. Rollins

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

K. Izumi

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar

K. Kawabe

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar

L. Barsotti

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Evans

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Fritschel

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge