Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Hoak is active.

Publication


Featured researches published by D. Hoak.


Classical and Quantum Gravity | 2008

The LSC glitch group: monitoring noise transients during the fifth LIGO science run

L. Blackburn; L. Cadonati; S. Caride; S. Caudill; S. Chatterji; N. Christensen; J. Dalrymple; S. Desai; A. Di Credico; Gregory Ely; J. Garofoli; L. M. Goggin; G. González; R. Gouaty; C. Gray; A. M. Gretarsson; D. Hoak; T. Isogai; E. Katsavounidis; J. S. Kissel; Sergey Klimenko; R. A. Mercer; S. R P Mohapatra; S. Mukherjee; F. J. Raab; K. Riles; P. R. Saulson; R. Schofield; P. Shawhan; J. Slutsky

The LIGO Scientific Collaboration (LSC) glitch group is part of the LIGO detector characterization effort. It consists of data analysts and detector experts who, during and after science runs, collaborate for a better understanding of noise transients in the detectors. Goals of the glitch group during the fifth LIGO science run (S5) included (1) offline assessment of the detector data quality, with focus on noise transients, (2) veto recommendations for astrophysical analysis and (3) feedback to the commissioning team on anomalies seen in gravitational wave and auxiliary data channels. Other activities included the study of auto-correlation of triggers from burst searches, stationarity of the detector noise and veto studies. The group identified causes for several noise transients that triggered false alarms in the gravitational wave searches; the times of such transients were identified and vetoed from the data generating the LSC astrophysical results.


Classical and Quantum Gravity | 2014

Achieving resonance in the Advanced LIGO gravitational-wave interferometer

A. Staley; D. V. Martynov; R. Abbott; R. Adhikari; K. Arai; S. Ballmer; L. Barsotti; A. F. Brooks; R. T. Derosa; S. Dwyer; A. Effler; M. Evans; P. Fritschel; V. V. Frolov; C. Gray; C. Guido; R. Gustafson; M. C. Heintze; D. Hoak; K. Izumi; K. Kawabe; E. J. King; J. S. Kissel; K. Kokeyama; M. Landry; D. E. McClelland; J. Miller; A. Mullavey; B OʼReilly; J. G. Rollins

Interferometric gravitational-wave detectors are complex instruments comprised of a Michelson interferometer enhanced by multiple coupled cavities. Active feedback control is required to operate these instruments and keep the cavities locked on resonance. The optical response is highly nonlinear until a good operating point is reached. The linear operating range is between 0.01% and 1% of a fringe for each degree of freedom. The resonance lock has to be achieved in all five degrees of freedom simultaneously, making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser is only _(~1) Hz, which is four orders of magnitude smaller than the linewidth of the free running laser. The arm length stabilization system is a new technique used for arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing third harmonics to lock the central Michelson interferometer, the Advanced LIGO detector has been successfully locked and brought to an operating point where detecting gravitational-waves becomes feasible.


Review of Scientific Instruments | 2012

Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

K. L. Dooley; M. A. Arain; D. Feldbaum; V. V. Frolov; M. C. Heintze; D. Hoak; Efim A. Khazanov; Antonio Lucianetti; R. M. Martin; G. Mueller; Oleg V. Palashov; V. Quetschke; D. H. Reitze; R. Savage; D. B. Tanner; L. Williams; Wan Wu

Katherine L. Dooley, a) Muzammil A. Arain, b) David Feldbaum, Valery V. Frolov, Matthew Heintze, Daniel Hoak, c) Efim A. Khazanov, Antonio Lucianetti, d) Rodica M. Martin, Guido Mueller, Oleg Palashov, Volker Quetschke, e) David H. Reitze, f) R. L. Savage, D. B. Tanner, Luke F. Williams, and Wan Wu g) University of Florida, Gainesville, FL 32611, USA LIGO Livingston Observatory, Livingston, LA 70754, USA Institute of Applied Physics, Nizhny Novgorod 603950, Russia LIGO Hanford Observatory, Richland, WA 99352, USAWe present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.


Optics Express | 2015

High precision optical cavity length and width measurements using double modulation

A. Staley; D. Hoak; A. Effler; K. Izumi; S. Dwyer; K. Kawabe; E. J. King; M. Rakhmanov; R. L. Savage; D. Sigg

We use doubly phase modulated light to measure both the length and the linewidth of an optical resonator with high precision. The first modulation is at RF frequencies and is set near a multiple of the free spectral range, whereas the second modulation is at audio frequencies to eliminate offset errors at DC. The light in transmission or in reflection of the optical resonator is demodulated while sweeping the RF frequency over the optical resonance. We derive expressions for the demodulated power in transmission, and show that the zero crossings of the demodulated signal in transmission serve as a precise measure of the cavity linewidth at half maximum intensity. We demonstrate the technique on two resonant cavities, with lengths 16 m and a 4 km, and achieve an absolute length accuracy as low as 70 ppb. The cavity width for the 16 m cavity was determined with an accuracy of approximately 6000 ppm. Through an analysis of the systematic errors we show that this result could be substantially improved with the reduction of technical sources of uncertainty.

Collaboration


Dive into the D. Hoak's collaboration.

Top Co-Authors

Avatar

A. Effler

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Gray

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar

J. S. Kissel

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

K. Kawabe

National Science Foundation

View shared research outputs
Top Co-Authors

Avatar

M. C. Heintze

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

V. V. Frolov

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

E. J. King

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. F. Brooks

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge