Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Billet is active.

Publication


Featured researches published by Adrian Billet.


Applied Physics Letters | 2007

In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells

P. Buehlmann; Julien Bailat; Didier Dominé; Adrian Billet; Fanny Meillaud; A. Feltrin; Christophe Ballif

We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40V, fill factor=71.9%, and Jsc=12.1mA∕cm2) is achieved with top cell, SOIR, and bottom cell thicknesses of 270, 95, and 1800nm, respectively.


Nano Letters | 2011

Nanoimprint lithography for high-efficiency thin-film silicon solar cells.

Corsin Battaglia; Jordi Escarré; Karin Söderström; Lukas Erni; Laura Ding; G. Bugnon; Adrian Billet; Mathieu Boccard; Loris Barraud; Stefaan De Wolf; Franz-Josef Haug; Matthieu Despeisse; Christophe Ballif

We demonstrate high-efficiency thin-film silicon solar cells with transparent nanotextured front electrodes fabricated via ultraviolet nanoimprint lithography on glass substrates. By replicating the morphology of state-of-the-art nanotextured zinc oxide front electrodes known for their exceptional light trapping properties, conversion efficiencies of up to 12.0% are achieved for micromorph tandem junction cells. Excellent light incoupling results in a remarkable summed short-circuit current density of 25.9 mA/cm(2) for amorphous top cell and microcrystalline bottom cell thicknesses of only 250 and 1100 nm, respectively. As efforts to maximize light harvesting continue, our study validates nanoimprinting as a versatile tool to investigate nanophotonic effects of a large variety of nanostructures directly on device performance.


Applied Physics Letters | 2010

Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate

Matthieu Despeisse; G. Bugnon; A. Feltrin; M. Stueckelberger; Peter Cuony; F. Meillaud; Adrian Billet; Christophe Ballif

The deposition of thin-film silicon solar cells on highly textured substrates results in improved light trapping in the cell. However, the growth of silicon layers on rough substrates can often lead to undesired current drains, degrading performance and reliability of the cells. We show that the use of a silicon oxide interlayer between the active area and the back contact of the cell permits in such cases to improve the electrical properties. Relative increases of up to 7.5% of fill factor and of 6.8% of conversion efficiency are shown for amorphous silicon cells deposited on highly textured substrates, together with improved yield and low-illumination performance.


Journal of Applied Physics | 2011

Micromorph thin-film silicon solar cells with transparent high-mobility hydrogenated indium oxide front electrodes

Corsin Battaglia; Lukas Erni; Mathieu Boccard; Loris Barraud; Jordi Escarré; Karin Söderström; G. Bugnon; Adrian Billet; Laura Ding; Matthieu Despeisse; Franz-Josef Haug; Stefaan De Wolf; Christophe Ballif

We investigate the performance of hydrogenated indium oxide as a transparent front electrode for micromorph thin-film silicon solar cells on glass. Light trapping is achieved by replicating the morphology of state-of-the-art zinc oxide electrodes, known for their outstanding light trapping properties, via ultraviolet nanoimprint lithography. As a result of the high electron mobility and excellent near-infrared transparency of hydrogenated indium oxide, the short-circuit current density of the cells is improved with respect to indium tin oxide and zinc oxide electrodes. We assess the potential for further current gains by identifying remaining sources of parasitic absorption and evaluate the light trapping capacity of each electrode. We further present a method, based on nonabsorbing insulating silicon nitride electrodes, allowing one to directly relate the optical reflectance to the external quantum efficiency. Our method provides a useful experimental tool to evaluate the light trapping potential of novel photonic nanostructures by a simple optical reflectance measurement, avoiding complications with electrical cell performance.


IEEE Journal of Photovoltaics | 2012

Optimization of ZnO Front Electrodes for High-Efficiency Micromorph Thin-Film Si Solar Cells

Mathieu Boccard; T. Söderström; Peter Cuony; Corsin Battaglia; Simon Hänni; Sylvain Nicolay; Laura Ding; M. Benkhaira; G. Bugnon; Adrian Billet; Mathieu Charrière; Fanny Meillaud; Matthieu Despeisse; Christophe Ballif

The quest for increased performances in thin-film silicon micromorph tandem devices nowadays requires an increase of current density. This can be achieved with thin cells by combining both robust cell design and efficient light management schemes. In this paper, we identify three key requirements for the transparent conductive oxide electrodes. First, strong light scattering into large angles is needed on the entire useful wavelength range: A front electrode texture with large enough features is shown to grant a high total current (typically >26 mA/cm2 with a 2.4-μm-thick absorber material), while sharp features are reported to allow for high top cell current (>13 mA/cm2) and reduced reflection at the ZnO/Si interface. Second, sufficiently smooth substrate features are needed to guarantee a high quality of the silicon active material, ensuring good and stable electrical properties (typically Voc around 1.4 V). Third, conduction and transparency of electrodes must be cleverly balanced, requiring high transparent conductive oxide mobility (∼50 cm


Philosophical Magazine | 2009

Limiting factors in the fabrication of microcrystalline silicon solar cells and microcrystalline/amorphous (‘micromorph’) tandems

Fanny Meillaud; A. Feltrin; Didier Dominé; P. Buehlmann; Martin Python; G. Bugnon; Adrian Billet; Gaetano Parascandolo; Julien Bailat; S. Faÿ; Nicolas Wyrsch; Christophe Ballif; A. Shah

^2


photovoltaic specialists conference | 2008

Micromorph tandem solar cells grown at high rate with in-situ intermediate reflector in industrial KAI PECVD reactors

Fanny Meillaud; A. Feltrin; Julien Bailat; P. Buehlmann; Didier Dominé; Adrian Billet; G. Bugnon; Christophe Ballif

/V/s) to maintain the sheet resistance below 30 Ω/sq while keeping absorption as low as possible. Optimization of these three key requirements using ZnO electrodes allowed us to realize high-efficiency micromorph devices with 13.5% initial and 11.5% stabilized efficiency.


Physica Status Solidi-rapid Research Letters | 2008

Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector

Didier Dominé; P. Buehlmann; Julien Bailat; Adrian Billet; A. Feltrin; Christophe Ballif

This contribution presents the status of amorphous and microcrystalline silicon solar cells on glass, and discusses some material/fabrication factors that presently limit their conversion efficiency. Particular attention is focused on recent results and developments at the Institute of Microtechnology (IMT) in Neuchâtel. The performances and stability of microcrystalline silicon single-junction and amorphous/microcrystalline (‘micromorph’) tandem solar cells are discussed, as a function of material properties. Recent results on the electrical effect of cracks in microcrystalline silicon material are presented. Degradation under the effect of illumination is a well-known limiting factor for amorphous silicon solar cells. As a comparison, studies on the stability of microcrystalline silicon with respect to light-induced degradation are commented upon. The importance of transparent contacts and anti-reflection layers for achieving low electrical and optical losses is discussed. Finally, efforts towards industrialization of micromorph tandem solar cells are highlighted, specifically (i) the development and implementation of an in situ intermediate reflector in a large-area industrial deposition system, and (ii) recent achievements in increasing the growth rate of microcrystalline silicon.


Progress in Photovoltaics | 2016

Comparison of amorphous silicon absorber materials: Kinetics of light-induced degradation

Michael Stuckelberger; Adrian Billet; Yannick Riesen; Mathieu Boccard; Matthieu Despeisse; Jan-Willem Schüttauf; Franz-Josef Haug; Christophe Ballif

We report on the latest results of tandem micromorph (a-Si:H/μc-Si:H) silicon solar cells fabricated in commercial Oerlikon Solar KAI-S and KAI-M PECVD reactors. First developments of in-situ silicon oxide based intermediate reflector (SOIR) in KAI reactors are as well presented. Under low depletion conditions (silane concentration ≪ 10%) our best micromorph solar cells achieve initial efficiencies up to 10.6% for a cell size ≫ 1cm2, with a deposition rate of 0.55 nm/s for microcrystalline silicon and an ex-situ silicon oxide-based intermediate reflector (SOIR). Under high depletion conditions, the growth rate could be raised up to 1.2 nm/s, in a modified KAI-M reactor, and the highest initial efficiency reached so far is 9.7% with in-situ SOIR and top cell thickness of ∼ 230 nm. Promising micromorph solar cells are thus produced under conditions that are highly favorable to low-cost fabrication of tandem modules at an industrial level.


photovoltaic specialists conference | 2011

Latest developments of high-efficiency micromorph tandem silicon solar cells implementing innovative substrate materials and improved cell design

Fanny Meillaud; Adrian Billet; Corsin Battaglia; Mathieu Boccard; G. Bugnon; Peter Cuony; Mathieu Charrière; Matthieu Despeisse; Laura Ding; Jordi Escarre-palou; Simon Hänni; Linus Löfgren; Sylvain Nicolay; Gaetano Parascandolo; Michael Stuckelberger; Christophe Ballif

Collaboration


Dive into the Adrian Billet's collaboration.

Top Co-Authors

Avatar

Christophe Ballif

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

G. Bugnon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Matthieu Despeisse

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Feltrin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Corsin Battaglia

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Fanny Meillaud

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Julien Bailat

University of Neuchâtel

View shared research outputs
Top Co-Authors

Avatar

P. Buehlmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Laura Ding

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge