Ainhoa Magrach
James Cook University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ainhoa Magrach.
Nature Communications | 2016
Oscar Venter; Eric W. Sanderson; Ainhoa Magrach; James R. Allan; Jutta Beher; Kendall R. Jones; Hugh P. Possingham; William F. Laurance; Peter Wood; B M Fekete; Marc A. Levy; James E. M. Watson
Human pressures on the environment are changing spatially and temporally, with profound implications for the planets biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km2 resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planets land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains.
Journal of Ecology | 2014
Luiz Fernando S. Magnago; David Edwards; Felicity A. Edwards; Ainhoa Magrach; Sebastião Venâncio Martins; William F. Laurance
Summary1. Fragmentation of tropical forests is one of the greatest threats to global biodiversity. Understand-ing how biological and functional attributes of communities respond to fragmentation and, in turn,whether ecosystem functioning is impacted upon are critical steps for assessing the long-term effectsand conservation values of forest fragments. Ecosystem functioning can be inferred through func-tional diversity metrics, including functional richness, evenness and divergence, which collectivelyquantify the range, distribution and uniqueness of functional traits within a community.2. Our study was carried out in forest remnants of the Brazilian Atlantic rain forest, which is a glo-bal hotspot of threatened biodiversity that has undergone massive deforestation and fragmentation.We focus on trees, which play critical functional roles in forest structure, food provisioning and car-bon storage, to examine community organization and functional diversity across a gradient of frag-mentation, from small to large fragments and at edge versus interior habitats.3. The interiors of small fragments have marginally higher species richness, but similar communitystructures, to the interiors of bigger fragments. In contrast, fragment edges suffered significant lossesof species and changes in community structure, relative to fragment interiors.4. Despite shifts in community organization, functional richness was not impacted by fragmentation,with the same number of functions provided independent of fragment size or proximity to edge.However, functional evenness and functional divergence both increased with decreasing fragmentsize, while fragment edges had lower functional evenness than interiors did, indicating that the abun-dance and dominance of functional traits has changed, with negative implications for functionalredundancy and ecosystem resilience. At fragment edges, large-fruited trees, critical as resources forfauna, were replaced by early successional, small-seeded species. The influence of fragment sizewas smaller, with a reduction in very large-fruited trees in small fragments counterbalanced byincreased numbers of fleshy- and medium-fruited trees. Wood density was not impacted by fragmen-tation.5. Synthesis. These results suggest that the interiors of even small fragments can contain importantbiodiversity, ecosystem functions and carbon stores, offering potential opportunities for cobenefitsunder existing carbon markets. Retaining forest fragments is an important conservation strategywithin the highly threatened Brazilian Atlantic forest biome.Key-words: carbon, fauna resources, fragmented landscape, functional diversity, functional traitattributes, species richness, tableland Atlantic rain forest, wood density
Ecology | 2014
William F. Laurance; Ana Andrade; Ainhoa Magrach; José Luís C. Camargo; Jefferson J. Valsko; Mason J. Campbell; Philip M. Fearnside; Will Edwards; Thomas E. Lovejoy; Susan G. Laurance
Lianas (climbing woody vines) are important structural parasites of tropical trees and may be increasing in abundance in response to global-change drivers. We assessed long-term (-14-year) changes in liana abundance and forest dynamics within 36 1-ha permanent plots spanning -600 km2 of undisturbed rainforest in central Amazonia. Within each plot, we counted each liana stem (> or = 2 cm diameter) and measured its diameter at 1.3 m height, and then used these data to estimate liana aboveground biomass. An initial liana survey was completed in 1997-1999 and then repeated in 2012, using identical methods. Liana abundance in the plots increased by an average of 1.00% +/- 0.88% per year, leading to a highly significant (t = 6.58, df = 35, P < 0.00001) increase in liana stem numbers. Liana biomass rose more slowly over time (0.32% +/- 1.37% per year) and the mean difference between the two sampling intervals was nonsignificant (t = 1.46, df = 35, P = 0.15; paired t tests). Liana size distributions shifted significantly (chi2 = 191, df = 8, P < 0.0001; Chi-square test for independence) between censuses, mainly as a result of a nearly 40% increase in the number of smaller (2-3 cm diameter) lianas, suggesting that lianas recruited rapidly during the study. We used long-term data on rainfall and forest dynamics from our study site to test hypotheses about potential drivers of change in liana communities. Lianas generally increase with rainfall seasonality, but we found no significant trends over time (1997-2012) in five rainfall parameters (total annual rainfall, dry-season rainfall, wet-season rainfall, number of very dry months, CV of monthly rainfall). However, rates of tree mortality and recruitment have increased significantly over time in our plots, and general linear mixed-effect models suggested that lianas were more abundant at sites with higher tree mortality and flatter topography. Rising concentrations of atmospheric CO2, which may stimulate liana growth, might also have promoted liana increases. Our findings clearly support the view that lianas are increasing in abundance in old-growth tropical forests, possibly in response to accelerating forest dynamics and rising CO2 concentrations. The aboveground biomass of trees was lowest in plots with abundant lianas, suggesting that lianas could reduce forest carbon storage and potentially alter forest dynamics if they continue to proliferate.
Ecological Applications | 2014
David Edwards; Ainhoa Magrach; Paul Woodcock; Yinqiu Ji; Norman T.-L. Lim; Felicity A. Edwards; Trond H. Larsen; Wayne W. Hsu; Suzan Benedick; Chey Vun Khen; Arthur Y. C. Chung; Glen Reynolds; Brendan Fisher; William F. Laurance; David S. Wilcove; Keith C. Hamer; Douglas W. Yu
Strong global demand for tropical timber and agricultural products has driven large-scale logging and subsequent conversion of tropical forests. Given that the majority of tropical landscapes have been or will likely be logged, the protection of biodiversity within tropical forests thus depends on whether species can persist in these economically exploited lands, and if species cannot persist, whether we can protect enough primary forest from logging and conversion. However, our knowledge of the impact of logging and conversion on biodiversity is limited to a few taxa, often sampled in different locations with complex land-use histories, hampering attempts to plan cost-effective conservation strategies and to draw conclusions across taxa. Spanning a land-use gradient of primary forest, once- and twice-logged forests, and oil palm plantations, we used traditional sampling and DNA metabarcoding to compile an extensive data set in Sabah, Malaysian Borneo for nine vertebrate and invertebrate taxa to quantify the biological impacts of logging and oil palm, develop cost-effective methods of protecting biodiversity, and examine whether there is congruence in response among taxa. Logged forests retained high species richness, including, on average, 70% of species found in primary forest. In contrast, conversion to oil palm dramatically reduces species richness, with significantly fewer primary-forest species than found on logged forest transects for seven taxa. Using a systematic conservation planning analysis, we show that efficient protection of primary-forest species is achieved with land portfolios that include a large proportion of logged-forest plots. Protecting logged forests is thus a cost-effective method of protecting an ecologically and taxonomically diverse range of species, particularly when conservation budgets are limited. Six indicator groups (birds, leaf-litter ants, beetles, aerial hymenopterans, flies, and true bugs) proved to be consistently good predictors of the response of the other taxa to logging and oil palm. Our results confidently establish the high conservation value of logged forests and the low value of oil palm. Cross-taxon congruence in responses to disturbance also suggests that the practice of focusing on key indicator taxa yields important information of general biodiversity in studies of logging and oil palm.
Conservation Biology | 2014
Ainhoa Magrach; William F. Laurance; Asier R. Larrinaga; Luis Santamaría
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States).
Global Change Biology | 2015
Luiz Fernando S. Magnago; Ainhoa Magrach; William F. Laurance; Sebastião Venâncio Martins; João Augusto Alves Meira-Neto; Marcelo Simonelli; David Edwards
Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer-grained assessments in fragmented landscapes rather than using averaged coarse-grained cells.
Scientific Data | 2016
Oscar Venter; Eric W. Sanderson; Ainhoa Magrach; James R. Allan; Jutta Beher; Kendall R. Jones; Hugh P. Possingham; William F. Laurance; Peter Wood; B M Fekete; Marc A. Levy; James E. M. Watson
Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km2 random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application.
Ecology | 2014
William F. Laurance; Ana Andrade; Ainhoa Magrach; José Luís C. Camargo; Mason J. Campbell; Philip M. Fearnside; Will Edwards; Jefferson J. Valsko; Thomas E. Lovejoy; Susan G. Laurance
Many contemporary ecosystems are likely to be affected by multiple environmental drivers, complicating efforts to predict future changes in those ecosystems. We studied long-term changes (1980–2012) in forest dynamics and liana (woody vine) abundance and biomass in fragmented and intact forests of the central Amazon. We did so by contrasting trends in 33 permanent 1-ha plots near forest edges (plot center <100 m from the nearest edge) with those in 36 1-ha plots in intact-forest interiors (150–3300 m from nearest edge). In fragmented and edge-affected forests, rates of tree (≥10 cm diameter at breast height) mortality and recruitment were often sharply elevated, especially in the first 10–15 years after fragmentation. Lianas (≥2 cm stem diameter) also increased markedly in abundance (mean ± SD = 1.78 ± 1.23% per yr) and biomass (1.30 ± 1.39% per yr) over time, especially in plots with high edge-related tree mortality. However, plots in undisturbed forest interiors, which were originally established as experimental controls, also experienced long-term changes. In these plots, tree mortality and recruitment rose significantly over time, as did liana abundance (1.00 ± 0.88% per yr) and biomass (0.32 ± 1.37% per yr). These changes were smaller in magnitude than those in fragments but were nonetheless concerted in nature and highly statistically significant. The causes of these changes in forest interiors are unknown, but are broadly consistent with those expected from rising atmospheric CO2 or regional climate drivers that influence forest dynamics. Hence, the dynamics of Amazonian forest fragments cannot be understood simply as a consequence of forest fragmentation. Rather, the changes we observed appear to arise from an interaction of fragmentation with one or more global- or regional-scale drivers affecting forest dynamics. Both sets of phenomena are evidently increasing forest dynamics and liana abundances in fragmented forests, changes that could reduce carbon storage and alter many aspects of forest ecology.
Conservation Biology | 2012
Ainhoa Magrach; Asier R. Larrinaga; Luis Santamaría
The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes.
PLOS ONE | 2015
Ainhoa Magrach; Jaboury Ghazoul
Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes.