Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiya Jouraku is active.

Publication


Featured researches published by Akiya Jouraku.


G3: Genes, Genomes, Genetics | 2013

Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

Yoshitaka Suetsugu; Ryo Futahashi; Hiroyuki Kanamori; Keiko Kadono-Okuda; Shun-ichi Sasanuma; Junko Narukawa; Masahiro Ajimura; Akiya Jouraku; Nobukazu Namiki; Michihiko Shimomura; Hideki Sezutsu; Mizuko Osanai-Futahashi; Masataka G. Suzuki; Takaaki Daimon; Tetsuro Shinoda; Kiyoko Taniai; Kiyoshi Asaoka; Ryusuke Niwa; Shinpei Kawaoka; Susumu Katsuma; Toshiki Tamura; Hiroaki Noda; Masahiro Kasahara; Sumio Sugano; Yutaka Suzuki; Haruhiko Fujiwara; Hiroshi Kataoka; Kallare P. Arunkumar; Archana Tomar; Javaregowda Nagaraju

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.


BMC Genomics | 2013

KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.

Akiya Jouraku; Kimiko Yamamoto; Seigo Kuwazaki; Masahiro Urio; Yoshitaka Suetsugu; Junko Narukawa; Kazuhisa Miyamoto; Kanako Kurita; Hiroyuki Kanamori; Yuichi Katayose; Takashi Matsumoto; Hiroaki Noda

BackgroundThe diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM).DescriptionKONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers.ConclusionsKONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.


Journal of Insect Physiology | 2015

Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust.

Ryohei Sugahara; Shinjiro Saeki; Akiya Jouraku; Takahiro Shiotsuki; Seiji Tanaka

The two plague locusts, Schistocerca gregaria and Locusta migratoria, exhibit density-dependent phase polyphenism. Nymphs occurring at low population densities (solitarious forms) are uniformly colored and match their body color to the background color of their habitat, whereas those occurring at high population densities (gregarious) develop black patterns. An injection of the neuropeptide, corazonin (Crz) has been shown to induce black patterns in locusts and affect the classical morphometric ratio, F/C (F, hind femur length; C, maximum head width). We herein identified and cloned the CRZ genes from S. gregaria (SgCRZ) and L. migratoria. A comparative analysis of prepro-Crz sequences among insects showed that the functional peptide was well conserved; its conservation was limited to the peptide region. Silencing of the identified SgCRZ gene in gregarious S. gregaria nymphs markedly lightened their body color and shifted the adult F/C ratio toward the value typical of solitarious forms. In addition, knockdown of the gene in solitarious nymphs strongly inhibited darkening even after a transfer to crowded conditions; however, these individuals developed black patterns after being injected with the Crz as a rescue treatment. SgCRZ was constitutively expressed in the brains of S. gregaria during nymphal development in both phases. This gene was highly expressed not only in the brain in both phases, but also in the corpora allata in the gregarious phase. This conspicuous phase-dependent difference in SgCRZ gene expression may indicate a functional role in the control of phase polyphenism in this locust.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis

Takumi Kayukawa; Akiya Jouraku; Yuka Ito; Tetsuro Shinoda

Significance Juvenile hormone (JH) intricately controls molting and metamorphosis in holometabolous insects. Ecdysone-induced protein 93F (E93) functions as an adult specifier gene in the pupal–adult transition. JH is known to repress E93 expression to prevent immature larvae from bypassing the pupal stage and progressing to precocious adult development; however, the molecular mechanism underlying JH-mediated E93 repression remains unknown. Here, we demonstrated that JH-inducible Krüppel homolog 1 functions as a direct transcriptional repressor of E93. This study markedly advances the present understanding of the molecular basis of JH function in repressing insect metamorphosis. Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval–pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93. Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.


Applied Entomology and Zoology | 2016

Functional characterization of the corazonin-encoding gene in phase polyphenism of the migratory locust, Locusta migratoria (Orthoptera: Acrididae)

Ryohei Sugahara; Seiji Tanaka; Akiya Jouraku; Takahiro Shiotsuki

Locusts exhibit phase polyphenism in which phase transition between the solitarious (isolation-reared) and gregarious (crowd-reared) phenotypes occurs in response to crowding conditions. Phase transformation from solitarious to gregarious nymphs is accompanied by darkening of the body color and changes in classical morphometric ratios such as F/C (F hind femur length; C maximum head width). These changes occur in the absence of crowding if solitarious locusts are injected with the neuropeptide, corazonin (Crz). This study investigated the effects of the knockdown of the CRZ gene on body color and morphometric characteristics in the migratory locust Locusta migratoria (L.) (Orthoptera: Acrididae). An injection of dsRNA for Crz significantly reduced CRZ mRNA levels and reduced the intensity of darkening on the pronotum in nymphs. The silencing of CRZ expression in gregarious nymphs shifted the F/C toward a value typical of the solitarious form in the adult stage. However, the expression profiles of CRZ were similar between the gregarious and solitarious nymphs. Therefore, we conclude that Crz is responsible for phase-dependent changes in darkening and the morphometric ratio; however, these changes are not controlled through differential CRZ expression at the transcriptional level.


PLOS ONE | 2015

Two Adenine Nucleotide Translocase Paralogues Involved in Cell Proliferation and Spermatogenesis in the Silkworm Bombyx mori

Ryohei Sugahara; Akiya Jouraku; Takayo Nakakura; Takahiro Kusakabe; Takenori Yamamoto; Yasuo Shinohara; Hideto Miyoshi; Takahiro Shiotsuki

Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.


Heredity | 2016

A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm

Yuji Yasukochi; Mizuki Ohno; Fukashi Shibata; Akiya Jouraku; Ryo Nakano; Yukio Ishikawa; Ken Sahara

A significant feature of the genomes of Lepidoptera, butterflies and moths, is the high conservation of chromosome organization. Recent remarkable progress in genome sequencing of Lepidoptera has revealed that syntenic gene order is extensively conserved across phylogenetically distant species. The ancestral karyotype of Lepidoptera is thought to be n=31; however, that of the most well-studied moth, Bombyx mori, is n=28, and diverse studies suggest that three chromosomal fusion events occurred in this lineage. To identify the boundaries between predicted ancient fusions involving B. mori chromosomes 11, 23 and 24, we constructed fluorescence in situ hybridization (FISH)-based chromosome maps of the European corn borer, Ostrinia nubilalis (n=31). We first determined a 511 Mb genomic sequence of the Asian corn borer, O. furnacalis, a congener of O. nubilalis, and isolated bacterial artificial chromosomes and fosmid clones that were expected to localize in candidate regions for the boundaries using these sequences. Combined with FISH and genetic analysis, we narrowed down the candidate regions to 40 kb–1.5 Mb, in strong agreement with a previous estimate based on the genome of a butterfly, Melitaea cinxia. The significant difference in the lengths of the candidate regions where no functional genes were observed may reflect the evolutionary time after fusion events.


Gene | 2017

Two types of albino mutants in desert and migratory locusts are caused by gene defects in the same signaling pathway

Ryohei Sugahara; Seiji Tanaka; Akiya Jouraku; Takahiro Shiotsuki

Albinism is caused by mutations in the genes involved in melanin production. Albino nymphs of Locusta migratoria and Schistocerca gregaria reared under crowded conditions are uniformly creamy-white in color. However, nothing is known about the molecular mechanisms underlying this phenomenon in locusts. The albino strain of L. migratoria is known to lack the dark-color-inducing neuropeptide corazonin (Crz). In this study, we report that this albino strain has a 10-base-pair deletion in the gene LmCRZ, which encodes Crz. This mutation was found to cause a frame-shift, resulting in a null mutation in Crz. On the other hand, the albino strain of S. gregaria is known to have an intact Crz. This strain was found to possess a single-nucleotide substitution in the middle of the Crz receptor-encoding gene, SgCRZR, which caused a nonsense mutation, resulting in a truncated receptor. Silencing of SgCRZR in wild-type S. gregaria nymphs greatly reduced the area and intensity of their black patterning, suggesting that the functional defect of SgCRZR likely causes the albinism. The expression level of SgCRZR in the albino S. gregaria was comparable to that in the wild type. Unlike the wild type, the albino strain of this locust did not show a phase-dependent shift in a morphometric trait controlled by Crz. From these results, we conclude that the mutations in LmCRZ and SgCRZR are responsible for the albinism in L. migratoria and S. gregaria, respectively, indicating that the two types of albinism are caused by different genetic defects in the same Crz signaling pathway.


Heredity | 2016

Mapping and recombination analysis of two moth colour mutations, Black moth and Wild wing spot, in the silkworm Bombyx mori

Katsura Ito; Susumu Katsuma; S Kuwazaki; Akiya Jouraku; T Fujimoto; Ken Sahara; Yuji Yasukochi; Kimiko Yamamoto; Hiroko Tabunoki; Takeshi Yokoyama; Keiko Kadono-Okuda; Toru Shimada

Many lepidopteran insects exhibit body colour variations, where the high phenotypic diversity observed in the wings and bodies of adults provides opportunities for studying adaptive morphological evolution. In the silkworm Bombyx mori, two genes responsible for moth colour mutation, Bm and Ws, have been mapped to 0.0 and 14.7 cM of the B. mori genetic linkage group 17; however, these genes have not been identified at the molecular level. We performed positional cloning of both genes to elucidate the molecular mechanisms that underlie the moth wing- and body-colour patterns in B. mori. We successfully narrowed down Bm and Ws to ~2-Mb-long and 100-kb-long regions on the same scaffold Bm_scaf33. Gene prediction analysis of this region identified 77 candidate genes in the Bm region, whereas there were no candidate genes in the Ws region. Fluorescence in-situ hybridisation analysis in Bm mutant detected chromosome inversion, which explains why there are no recombination in the corresponding region. The comparative genomic analysis demonstrated that the candidate regions of both genes shared synteny with a region associated with wing- and body-colour variations in other lepidopteran species including Biston betularia and Heliconius butterflies. These results suggest that the genes responsible for wing and body colour in B. mori may be associated with similar genes in other Lepidoptera.


Gene | 2017

Geographic variation in RNAi sensitivity in the migratory locust

Ryohei Sugahara; Seiji Tanaka; Akiya Jouraku; Takahiro Shiotsuki

The RNA interference (RNAi) technology has been widely used in basic and applied research. It is known that RNAi works in some species but not in others, although the cause for this difference remains unclear. Here, we present inter- and intra-populational variations in RNAi sensitivity in the migratory locust Locusta migratoria, and provide information on the genetic background of such variations. In the four strains analyzed, originating from different Japanese localities, most individuals from two of the strains were sensitive to injections of double-stranded RNA (dsRNA) against the corazonin (CRZ) and ecdysone receptor genes, whereas those from the other two strains were resistant. Selection for individuals sensitive to dsCRZ produced a dramatic increase in the RNAi sensitivity in the following generations, although phenotypes also varied in the selected line, suggesting that several genes might control RNAi sensitivity. Reciprocal crosses between a sensitive and a resistant strain suggested that the resistant phenotype is dominant. The expression levels of nine RNAi-associated genes known for other organisms were not correlated with the variation in RNAi sensitivity observed in L. migratoria. Variations in RNAi sensitivity as the ones observed in this study should be considered when using RNAi in basic and applied research as well as in pest management.

Collaboration


Dive into the Akiya Jouraku's collaboration.

Top Co-Authors

Avatar

Takahiro Shiotsuki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Ryohei Sugahara

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Seigo Kuwazaki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Seiji Tanaka

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge