Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alec C. Kimmelman is active.

Publication


Featured researches published by Alec C. Kimmelman.


Genes & Development | 2006

Genetics and biology of pancreatic ductal adenocarcinoma

Alec C. Kimmelman; Ben Z. Stanger; Nabeel Bardeesy; Ronald A. DePinho

With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.


Genes & Development | 2011

Pancreatic cancers require autophagy for tumor growth

Shenghong Yang; Xiaoxu Wang; Gianmarco Contino; Marc Liesa; Ergun Sahin; Haoqiang Ying; Alexandra S. Bause; Ying-Hua Li; Jayne M. Stommel; Giacomo Dell'Antonio; Josef Mautner; Giovanni Tonon; Marcia C. Haigis; Orian S. Shirihai; Claudio Doglioni; Nabeel Bardeesy; Alec C. Kimmelman

Macroautophagy (autophagy) is a regulated catabolic pathway to degrade cellular organelles and macromolecules. The role of autophagy in cancer is complex and may differ depending on tumor type or context. Here we show that pancreatic cancers have a distinct dependence on autophagy. Pancreatic cancer primary tumors and cell lines show elevated autophagy under basal conditions. Genetic or pharmacologic inhibition of autophagy leads to increased reactive oxygen species, elevated DNA damage, and a metabolic defect leading to decreased mitochondrial oxidative phosphorylation. Together, these ultimately result in significant growth suppression of pancreatic cancer cells in vitro. Most importantly, inhibition of autophagy by genetic means or chloroquine treatment leads to robust tumor regression and prolonged survival in pancreatic cancer xenografts and genetic mouse models. These results suggest that, unlike in other cancers where autophagy inhibition may synergize with chemotherapy or targeted agents by preventing the up-regulation of autophagy as a reactive survival mechanism, autophagy is actually required for tumorigenic growth of pancreatic cancers de novo, and drugs that inactivate this process may have a unique clinical utility in treating pancreatic cancers and other malignancies with a similar dependence on autophagy. As chloroquine and its derivatives are potent inhibitors of autophagy and have been used safely in human patients for decades for a variety of purposes, these results are immediately translatable to the treatment of pancreatic cancer patients, and provide a much needed, novel vantage point of attack.


Nature | 2013

Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway

Jaekyoung Son; Costas A. Lyssiotis; Haoqiang Ying; Xiaoxu Wang; Sujun Hua; Matteo Ligorio; Rushika M. Perera; Cristina R. Ferrone; Edouard Mullarky; Ng Shyh-Chang; Ya’an Kang; Jason B. Fleming; Nabeel Bardeesy; John M. Asara; Marcia C. Haigis; Ronald A. DePinho; Lewis C. Cantley; Alec C. Kimmelman

Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP+ ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.


Nature | 2008

p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation.

Hongwu Zheng; Haoqiang Ying; Haiyan Yan; Alec C. Kimmelman; David Hiller; An Jou Chen; Samuel R. Perry; Giovanni Tonon; Gerald C. Chu; Zhihu Ding; Jayne M. Stommel; Katherine Dunn; Ruprecht Wiedemeyer; Mingjian James You; Cameron Brennan; Y. Alan Wang; Keith L. Ligon; Wing Hung Wong; Lynda Chin; Ronald A. DePinho

Glioblastoma (GBM) is a highly lethal brain tumour presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as a high-grade disease that typically harbours mutations in EGFR, PTEN and INK4A/ARF (also known as CDKN2A), and the secondary GBM subtype evolves from the slow progression of a low-grade disease that classically possesses PDGF and TP53 events. Here we show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted TP53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of TP53 as well as the expected PTEN mutations. Integrated transcriptomic profiling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives increased Myc protein levels and its associated signature. Functional studies validated increased Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of NSCs doubly null for p53 and Pten (p53-/- Pten-/-) as well as tumour neurospheres (TNSs) derived from this model. Myc also serves to maintain robust tumorigenic potential of p53-/- Pten-/- TNSs. These murine modelling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumour suppressor mutation profile in human primary GBM and establish Myc as an important target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.


The EMBO Journal | 2015

Autophagy in malignant transformation and cancer progression

Lorenzo Galluzzi; Federico Pietrocola; José Manuel Bravo-San Pedro; Ravi K. Amaravadi; Eric H. Baehrecke; Francesco Cecconi; Patrice Codogno; Jayanta Debnath; David A. Gewirtz; Vassiliki Karantza; Alec C. Kimmelman; Sharad Kumar; Beth Levine; Maria Chiara Maiuri; Seamus J. Martin; Josef M. Penninger; Mauro Piacentini; David C. Rubinsztein; Hans-Uwe Simon; Anne Simonsen; Andrew Thorburn; Guillermo Velasco; Kevin M. Ryan; Guido Kroemer

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.


Genes & Development | 2011

The dynamic nature of autophagy in cancer

Alec C. Kimmelman

Macroautophagy (referred to hereafter as autophagy) is a highly regulated cellular process that serves to remove damaged proteins and organelles from the cell. Autophagy contributes to an array of normal and pathological processes, and has recently emerged as a key regulator of multiple aspects of cancer biology. The role of autophagy in cancer is complex and is likely dependent on tumor type, stage, and genetic context. This complexity is illustrated by the identification of settings where autophagy acts potently to either promote or inhibit tumorigenesis. In this review, I discuss the underlying basis for these opposing functions and propose a model suggesting a dynamic role for autophagy in malignancy. Collectively, the data point to autophagy as serving as a barrier to limit tumor initiation. Once neoplastic lesions are established, it appears that adaptive changes occur that now result in positive roles for autophagy in malignant progression and in subsequent tumor maintenance. Remarkably, constitutive activation of autophagy is critical for continued growth of some tumors, serving to both reduce oxidative stress and provide key intermediates to sustain cell metabolism. Autophagy is also induced in response to cancer therapies where it can function as a survival mechanism that limits drug efficacy. These findings have inspired significant interest in applying anti-autophagy therapies as an entirely new approach to cancer treatment. It is now apparent that aberrant control of autophagy is among the key hallmarks of cancer. While much needs to be learned about the regulation and context-dependent biological functions of autophagy, it seems clear that modulation of this process will be an attractive avenue for future cancer therapeutic approaches.


Nature | 2014

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function

Andrea Viale; Piergiorgio Pettazzoni; Costas A. Lyssiotis; Haoqiang Ying; Nora Sanchez; Matteo Marchesini; Alessandro Carugo; Tessa Green; Sahil Seth; Virginia Giuliani; Maria Kost-Alimova; Florian Muller; Simona Colla; Luigi Nezi; Giannicola Genovese; Angela K. Deem; Avnish Kapoor; Wantong Yao; Emanuela Brunetto; Ya’an Kang; Min Yuan; John M. Asara; Y. Alan Wang; Timothy P. Heffernan; Alec C. Kimmelman; Huamin Wang; Jason B. Fleming; Lewis C. Cantley; Ronald A. DePinho; Giulio Draetta

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (KrasG12D, herein KRas) in a p53LoxP/WT background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Nature | 2014

Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy

Joseph D. Mancias; Xiaoxu Wang; Steven P. Gygi; J. Wade Harper; Alec C. Kimmelman

Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration. Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo, including organelles, proteins or intracellular pathogens, are targeted for selective autophagy is limited. Here we use quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins in human cells, including cargo receptors. Like known cargo receptors, nuclear receptor coactivator 4 (NCOA4) was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo–receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species but is degraded via autophagy to release iron through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin led to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy), which is critical for iron homeostasis, and provides a resource for further dissection of autophagosomal cargo–receptor connectivity.


Journal of Cellular Biochemistry | 2007

Stromal biology of pancreatic cancer

Gerald C. Chu; Alec C. Kimmelman; Ronald A. DePinho

The genetic paradigm of cancer, focused largely on sequential molecular aberrations and associated biological impact in the neoplastic cell compartment of malignant tumors, has dominated our view of cancer pathogenesis. For the most part, this conceptualization has overlooked the dynamic and complex contributions of the surrounding microenvironment comprised of non‐tumor cells (stroma) that may resist, react to, and/or foster tumor development. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease in which a prominent tumor stroma compartment is a defining characteristic. Indeed, the bulk of PDAC tumor volume consists of non‐neoplastic fibroblastic, vascular, and inflammatory cells surrounded by immense quantities of extracellular matrix, far exceeding that found in most other tumor types. Remarkably, little is known about the composition and physiology of the PDAC tumor microenvironment, in particular, the role of stroma in tumor initiation and progression. This review attempts to define key challenges, opportunities and state‐of‐knowledge relating to the PDAC microenvironment research with an emphasis on how inflammatory processes and key cancer pathways may shape the ontogeny of the tumor stroma. Such knowledge may be used to understand the evolution and biology of this lethal cancer and may convert these insights into new points of therapeutic intervention. J. Cell. Biochem. 101: 887–907, 2007.


Cancer Cell | 2013

SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

Seung Min Jeong; Cuiying Xiao; Lydia W.S. Finley; Tyler Lahusen; Amanda Souza; Kerry A. Pierce; Ying-Hua Li; Xiaoxu Wang; Gaëlle Laurent; Natalie J. German; Xiaoling Xu; Cuiling Li; Rui-Hong Wang; Jaewon Lee; Alfredo Csibi; Richard A. Cerione; John Blenis; Clary B. Clish; Alec C. Kimmelman; Chu-Xia Deng; Marcia C. Haigis

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.

Collaboration


Dive into the Alec C. Kimmelman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haoqiang Ying

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. DePinho

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John M. Asara

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Chan

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge