Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Costas A. Lyssiotis is active.

Publication


Featured researches published by Costas A. Lyssiotis.


Nature | 2013

Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway

Jaekyoung Son; Costas A. Lyssiotis; Haoqiang Ying; Xiaoxu Wang; Sujun Hua; Matteo Ligorio; Rushika M. Perera; Cristina R. Ferrone; Edouard Mullarky; Ng Shyh-Chang; Ya’an Kang; Jason B. Fleming; Nabeel Bardeesy; John M. Asara; Marcia C. Haigis; Ronald A. DePinho; Lewis C. Cantley; Alec C. Kimmelman

Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP+ ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.


Nature Genetics | 2011

Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

Jason W. Locasale; Alexandra R. Grassian; Tamar Melman; Costas A. Lyssiotis; Katherine R. Mattaini; Adam J. Bass; Gregory J. Heffron; Christian M. Metallo; Taru A. Muranen; Hadar Sharfi; Atsuo T. Sasaki; Dimitrios Anastasiou; Edouard Mullarky; Natalie I. Vokes; Mika Sasaki; Rameen Beroukhim; Gregory Stephanopoulos; Azra H. Ligon; Matthew Meyerson; Andrea L. Richardson; Lynda Chin; Gerhard Wagner; John M. Asara; Joan S. Brugge; Lewis C. Cantley; Matthew G. Vander Heiden

Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.


Nature | 2014

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function

Andrea Viale; Piergiorgio Pettazzoni; Costas A. Lyssiotis; Haoqiang Ying; Nora Sanchez; Matteo Marchesini; Alessandro Carugo; Tessa Green; Sahil Seth; Virginia Giuliani; Maria Kost-Alimova; Florian Muller; Simona Colla; Luigi Nezi; Giannicola Genovese; Angela K. Deem; Avnish Kapoor; Wantong Yao; Emanuela Brunetto; Ya’an Kang; Min Yuan; John M. Asara; Y. Alan Wang; Timothy P. Heffernan; Alec C. Kimmelman; Huamin Wang; Jason B. Fleming; Lewis C. Cantley; Ronald A. DePinho; Giulio Draetta

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (KrasG12D, herein KRas) in a p53LoxP/WT background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.

Costas A. Lyssiotis; Ruth K. Foreman; Judith Staerk; Michael Garcia; Divya Mathur; Styliani Markoulaki; Jacob Hanna; Luke L. Lairson; Bradley D. Charette; Laure C. Bouchez; Michael Bollong; Conrad Kunick; Achim Brinker; Charles Y. Cho; Peter G. Schultz; Rudolf Jaenisch

Ectopic expression of defined transcription factors can reprogram somatic cells to induced pluripotent stem (iPS) cells, but the utility of iPS cells is hampered by the use of viral delivery systems. Small molecules offer an alternative to replace virally transduced transcription factors with chemical signaling cues responsible for reprogramming. In this report we describe a small-molecule screening platform applied to identify compounds that functionally replace the reprogramming factor Klf4. A series of small-molecule scaffolds were identified that activate Nanog expression in mouse fibroblasts transduced with a subset of reprogramming factors lacking Klf4. Application of one such molecule, kenpaullone, in lieu of Klf4 gave rise to iPS cells that are indistinguishable from murine embryonic stem cells. This experimental platform can be used to screen large chemical libraries in search of novel compounds to replace the reprogramming factors that induce pluripotency. Ultimately, such compounds may provide mechanistic insight into the reprogramming process.


Science | 2013

Influence of Threonine Metabolism on S-Adenosylmethionine and Histone Methylation

Ng Shyh-Chang; Jason W. Locasale; Costas A. Lyssiotis; Yuxiang Zheng; Ren Yi Teo; Sutheera Ratanasirintrawoot; Jin Zhang; Tamer T. Onder; Juli Unternaehrer; Hao Zhu; John M. Asara; George Q. Daley; Lewis C. Cantley

SAM, Histones, and Stem Cells Mouse embryonic stem cells require threonine for growth and express large amounts of the enzyme that catalyzes the first step in threonine metabolism. To find out what is so important about threonine in these cells, Shyh-Change et al. (p. 222, published online 1 November; see the Perspective by Sassone-Corsi) monitored changes in metabolism by mass spectrometry in induced pluripotent stem cells. Threonine was required to maintain cellular concentrations of S-adenosylmethionine (SAM), a substrate used for protein methylation. Restriction of threonine inhibited methylation of histones, which is characteristic of chromatin in embryonic stem cells. Thus, altered metabolism of threonine and methionine in stem cells may be linked to epigenetic changes that influence genetic reprogramming and decisions of stem cells to proliferate or differentiate. Unusual threonine metabolism in mouse stem cells influences genetic reprogramming via altered histone methylation. [Also see Perspective by Sassone-Corsi] Threonine is the only amino acid critically required for the pluripotency of mouse embryonic stem cells (mESCs), but the detailed mechanism remains unclear. We found that threonine and S-adenosylmethionine (SAM) metabolism are coupled in pluripotent stem cells, resulting in regulation of histone methylation. Isotope labeling of mESCs revealed that threonine provides a substantial fraction of both the cellular glycine and the acetyl–coenzyme A (CoA) needed for SAM synthesis. Depletion of threonine from the culture medium or threonine dehydrogenase (Tdh) from mESCs decreased accumulation of SAM and decreased trimethylation of histone H3 lysine 4 (H3K4me3), leading to slowed growth and increased differentiation. Thus, abundance of SAM appears to influence H3K4me3, providing a possible mechanism by which modulation of a metabolic pathway might influence stem cell fate.


Nature | 2013

A regenerative approach to the treatment of multiple sclerosis

Vishal Deshmukh; Virginie Tardif; Costas A. Lyssiotis; Chelsea C. Green; Bilal E. Kerman; Hyung Joon Kim; Krishnan Padmanabhan; Jonathan G. Swoboda; Insha Ahmad; Toru Kondo; Fred H. Gage; Argyrios N. Theofilopoulos; Brian R. Lawson; Peter G. Schultz; Luke L. Lairson

Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.


Nature | 2016

Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion

Cristovão M. Sousa; Douglas E. Biancur; Xiaoxu Wang; Christopher J. Halbrook; Mara H. Sherman; Li Zhang; Daniel M. Kremer; Rosa F. Hwang; Agnes K. Witkiewicz; Haoqiang Ying; John M. Asara; Ronald M. Evans; Lewis C. Cantley; Costas A. Lyssiotis; Alec C. Kimmelman

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.


Cell Stem Cell | 2009

A Small Molecule Primes Embryonic Stem Cells for Differentiation

Shoutian Zhu; Heiko Wurdak; Jian Wang; Costas A. Lyssiotis; Eric C. Peters; Charles Y. Cho; Xu Wu; Peter G. Schultz

Embryonic stem cells (ESCs) are an attractive source of cells for disease modeling in vitro and may eventually provide access to cells/tissues for the treatment of many degenerative diseases. However, applications of ESC-derived cell types are largely hindered by the lack of highly efficient methods for lineage-specific differentiation. Using a high-content screen, we have identified a small molecule, named stauprimide, that increases the efficiency of the directed differentiation of mouse and human ESCs in synergy with defined extracellular signaling cues. Affinity-based methods revealed that stauprimide interacts with NME2 and inhibits its nuclear localization. This, in turn, leads to downregulation of c-Myc, a key regulator of the pluripotent state. Thus, our findings identify a chemical tool that primes ESCs for efficient differentiation through a mechanism that affects c-Myc expression, and this study points to an important role for NME2 in ESC self-renewal.


Molecular Cell | 2011

mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR.

Daming Gao; Hiroyuki Inuzuka; Meng Kwang Marcus Tan; Hidefumi Fukushima; Jason W. Locasale; Pengda Liu; Lixin Wan; Bo Zhai; Y. Rebecca Chin; Shavali Shaik; Costas A. Lyssiotis; Steven P. Gygi; Alex Toker; Lewis C. Cantley; John M. Asara; J. Wade Harper; Wenyi Wei

The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.


Angewandte Chemie | 2011

Chemical control of stem cell fate and developmental potential.

Costas A. Lyssiotis; Luke Lairson; Anthony E. Boitano; Heiko Wurdak; Shoutian Zhu; Peter G. Schultz

Potential applications of stem cells in medicine range from their inclusion in disease modeling and drug discovery to cell transplantation and regenerative therapies. However, before this promise can be realized several obstacles must be overcome, including the control of stem cell differentiation, allogeneic rejection and limited cell availability. This will require an improved understanding of the mechanisms that govern stem cell potential and the development of robust methods to efficiently control their fate. Recently, a number of small molecules have been identified that can be used both in vitro and in vivo as tools to expand stem cells, direct their differentiation, or reprogram somatic cells to a more naive state. These molecules have provided a wealth of insights into the signaling and epigenetic mechanisms that regulate stem cell biology, and are already beginning to contribute to the development of effective treatments for tissue repair and regeneration.

Collaboration


Dive into the Costas A. Lyssiotis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Asara

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke L. Lairson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Haoqiang Ying

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald A. DePinho

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shoutian Zhu

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge