Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Cascioferro is active.

Publication


Featured researches published by Alessandro Cascioferro.


Nature Genetics | 2013

Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis

Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez

Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.


Nature Genetics | 2013

Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis

Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez

Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.


Molecular Microbiology | 2007

PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall.

Alessandro Cascioferro; Giovanni Delogu; Marisa Colone; Michela Sali; Annarita Stringaro; Giuseppe Arancia; Giovanni Fadda; Giorgio Palù; Riccardo Manganelli

The PE family of Mycobacterium tuberculosis includes 98 proteins which share a highly homologous N‐terminus sequence of about 110 amino acids (PE domain). Depending on the C‐terminal domain, the PE family can be divided in three subfamilies, the largest of which is the PE_PGRS with 61 members. In this study, we determined the cellular localization of three PE proteins by cell fractionation and immunoelectron microscopy by expressing chimeric epitope‐tagged recombinant proteins in Mycobacterium smegmatis. We demonstrate that the PE domain of PE_PGRS33 and PE11 (a protein constituted by the only PE domain) contains the information necessary for cell wall localization, and that they can be used as N‐terminal fusion partners to deliver a sufficiently long C‐terminus‐linked protein domain on the mycobacterial cell surface. Indeed, we demonstrate that PE_PGRS33 and Rv3097c (a lipase belonging to the PE family) are surface exposed and localize in the mycobacterial cell wall. Moreover, we found that PE_PGRS33 is easily extractable by detergents suggesting its localization in the mycobacterial outer membrane. Beyond defining the cellular localization of these proteins, and a function for their PE domains, these data open the interesting possibility to construct recombinant mycobacteria expressing heterologous antigens on their surface for vaccine purposes.


Journal of Biological Chemistry | 2011

Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) Protein Domains Target LipY Lipases of Pathogenic Mycobacteria to the Cell Surface via the ESX-5 Pathway

Maria H. Daleke; Alessandro Cascioferro; Karin de Punder; Roy Ummels; Abdallah M. Abdallah; Nicole N. van der Wel; Peter J. Peters; Joen Luirink; Riccardo Manganelli; Wilbert Bitter

The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipYtub) and M. marinum PPE-LipY (LipYmar) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipYtub and LipYmar require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipYtub, but not LipYtub lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation.


Cellular Microbiology | 2012

PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis

Raffaella Iantomasi; Michela Sali; Alessandro Cascioferro; Ivana Palucci; Antonella Zumbo; Silvia Soldini; Stefano Rocca; Emanuela Greco; Giuseppe Maulucci; Marco De Spirito; Maurizio Fraziano; Giovanni Fadda; Riccardo Manganelli; Giovanni Delogu

The role and function of PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) remains elusive. In this study for the first time, Mtb isogenic mutants missing selected PE_PGRSs were used to investigate their role in the pathogenesis of tuberculosis (TB). We demonstrate that the MtbΔPE_PGRS30 mutant was impaired in its ability to colonize lung tissue and to cause tissue damage, specifically during the chronic steps of infection. Inactivation of PE_PGRS30 resulted in an attenuated phenotype in murine and human macrophages due to the inability of the Mtb mutant to inhibit phagosome–lysosome fusion. Using a series of functional deletion mutants of PE_PGRS30 to complement MtbΔPE_PGRS30, we show that the unique C‐terminal domain of the protein is not required for the full virulence. Interestingly, when Mycobacterium smegmatis recombinant strain expressing PE_PGRS30 was used to infect macrophages or mice in vivo, we observed enhanced cytotoxicity and cell death, and this effect was dependent upon the PGRS domain of the protein.Taken together these results indicate that PE_PGRS30 is necessary for the full virulence of Mtb and sufficient to induce cell death in host cells by the otherwise non‐pathogenic species M. smegmatis, clearly demonstrating that PE_PGRS30 is an Mtb virulence factor.


Nature microbiology | 2016

pks5 -recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence

Eva C. Boritsch; Wafa Frigui; Alessandro Cascioferro; Wladimir Malaga; Gilles Etienne; Françoise Laval; Alexandre Pawlik; Fabien Le Chevalier; Mickael Orgeur; Laurence Ma; Christiane Bouchier; Timothy P. Stinear; Philip Supply; Laleh Majlessi; Mamadou Daffé; Christophe Guilhot; Roland Brosch

Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host–pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.


PLOS ONE | 2011

Functional Dissection of the PE Domain Responsible for Translocation of PE_PGRS33 across the Mycobacterial Cell Wall

Alessandro Cascioferro; Maria H. Daleke; Marcello Ventura; Valentina Donà; Giovanni Delogu; Giorgio Palù; Wilbert Bitter; Riccardo Manganelli

PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PERv1818c), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PERv1818c domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation.


Cellular Microbiology | 2014

Analysis of SecA2‐dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector

Aniek D. van der Woude; Esther J. M. Stoop; Michael Stiess; Sen Wang; Roy Ummels; Gunny van Stempvoort; Sander R. Piersma; Alessandro Cascioferro; Connie R. Jimenez; Edith N. G. Houben; Joen Luirink; Jean Pieters; Astrid M. van der Sar; Wilbert Bitter

The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2‐dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2‐dependent substrates. Immunoblotting procedures confirmed SecA2‐dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG‐overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2‐dependent membrane localization of PknG is an important determinant for M. marinum virulence.


Infection and Immunity | 2010

Surface expression of MPT64 as a fusion with the PE domain of PE_PGRS33 enhances Mycobacterium bovis BCG protective activity against Mycobacterium tuberculosis in mice.

Michela Sali; Gabriele Di Sante; Alessandro Cascioferro; Antonella Zumbo; Chiara Nicolò; Valentina Donà; Stefano Rocca; Annabella Procoli; Matteo Morandi; Francesco Ria; Giorgio Palù; Giovanni Fadda; Riccardo Manganelli; Giovanni Delogu

ABSTRACT To improve the current vaccine against tuberculosis, a recombinant strain of Mycobacterium bovis bacillus Calmette-Guérin (rBCG) expressing a Mycobacterium tuberculosis vaccine candidate antigen (MPT64) in strong association with the mycobacterial cell wall was developed. To deliver the candidate antigen on the surface, we fused the mpt64 gene to the sequence encoding the PE domain of the PE_PGRS33 protein of M. tuberculosis (to create strain HPE-ΔMPT64-BCG), which we have previously shown to transport proteins to the bacterial surface. In a series of protection experiments in the mouse model of tuberculosis, we showed that (i) immunization of mice with HPE-ΔMPT64-BCG provides levels of protection significantly higher than those afforded by the parental BCG strain, as assessed by bacterial colonization in lungs and spleens and by lung involvement (at both 28 and 70 days postchallenge), (ii) rBCG strains expressing MPT64 provide better protection than the parental BCG strain only when this antigen is surface expressed, and (iii) the HPE-ΔMPT64-BCG-induced MPT64-specific T cell repertoire when characterized by β chain variable region-β chain joining region (BV-BJ) spectratyping indicates that protection is correlated with the ability to recruit gamma interferon (IFN-γ)-secreting T cells carrying the BV8.3-BJ1.5 (172 bp) shared rearrangement. These results demonstrate that HPE-ΔMPT64-BCG is one of the most effective new vaccines tested so far in the mouse model of tuberculosis and underscore the impact of antigen cellular localization on the induction of the specific immune response induced by rBCG.


Applied and Environmental Microbiology | 2010

Xer Site-Specific Recombination, an Efficient Tool To Introduce Unmarked Deletions into Mycobacteria

Alessandro Cascioferro; Francesca Boldrin; Agnese Serafini; Roberta Provvedi; Giorgio Palù; Riccardo Manganelli

ABSTRACT Genetic manipulation of mycobacteria still represents a serious challenge due to the lack of tools and selection markers. In this report, we describe the development of an intrinsically unstable excisable cassette for introduction of unmarked mutations in both Mycobacterium smegmatis and Mycobacterium tuberculosis.

Collaboration


Dive into the Alessandro Cascioferro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Delogu

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Sali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge