Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie E. Craig is active.

Publication


Featured researches published by Jamie E. Craig.


Scientific Reports | 2016

Assessment of polygenic effects links primary open-angle glaucoma and age-related macular degeneration.

Gabriel Cuellar-Partida; Jamie E. Craig; Kathryn P. Burdon; Jie Jin Wang; Brendan J. Vote; Emmanuelle Souzeau; Ian McAllister; Timothy Isaacs; Stewart Lake; David A. Mackey; Ian Constable; Paul Mitchell; Alex W. Hewitt; Stuart MacGregor

Primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD) are leading causes of irreversible blindness. Several loci have been mapped using genome-wide association studies. Until very recently, there was no recognized overlap in the genetic contribution to AMD and POAG. At genome-wide significance level, only ABCA1 harbors associations to both diseases. Here, we investigated the genetic architecture of POAG and AMD using genome-wide array data. We estimated the heritability for POAG (h2g = 0.42 ± 0.09) and AMD (h2g = 0.71 ± 0.08). Removing known loci for POAG and AMD decreased the h2g estimates to 0.36 and 0.24, respectively. There was evidence for a positive genetic correlation between POAG and AMD (rg = 0.47 ± 0.25) which remained after removing known loci (rg = 0.64 ± 0.31). We also found that the genetic correlation between sexes for POAG was likely to be less than 1 (rg = 0.33 ± 0.24), suggesting that differences of prevalence among genders may be partly due to heritable factors.


American Journal of Human Genetics | 2004

Mutations in LRP5 or FZD4 Underlie the Common Familial Exudative Vitreoretinopathy Locus on Chromosome 11q

Carmel Toomes; Helen M. Bottomley; Richard M. Jackson; Katherine V. Towns; Sheila Scott; David A. Mackey; Jamie E. Craig; Li Jiang; Zhenglin Yang; Richard C. Trembath; Geoffrey Woodruff; Cheryl Y. Gregory-Evans; Kevin Gregory-Evans; Michael J. Parker; Graeme C.M. Black; Louise Downey; Kang Zhang; Chris F. Inglehearn

Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Autosomal dominant FEVR is genetically heterogeneous, but its principal locus, EVR1, is on chromosome 11q13-q23. The gene encoding the Wnt receptor frizzled-4 (FZD4) was recently reported to be the EVR1 gene, but our mutation screen revealed fewer patients harboring mutations than expected. Here, we describe mutations in a second gene at the EVR1 locus, low-density-lipoprotein receptor-related protein 5 (LRP5), a Wnt coreceptor. This finding further underlines the significance of Wnt signaling in the vascularization of the eye and highlights the potential dangers of using multiple families to refine genetic intervals in gene-identification studies.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1

Kathryn P. Burdon; Stuart MacGregor; Alex W. Hewitt; Shiwani Sharma; Glyn Chidlow; Richard Ad Mills; Patrick Danoy; Robert J. Casson; Ananth C. Viswanathan; Jimmy Z. Liu; John Landers; Anjali K. Henders; John P. M. Wood; Emmanuelle Souzeau; April Crawford; Paul Leo; Jie Jin Wang; Elena Rochtchina; Dale R. Nyholt; Nicholas G. Martin; Grant W. Montgomery; Paul Mitchell; Matthew A. Brown; David A. Mackey; Jamie E. Craig

We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10−10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10−9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10−14, OR = 1.51, 95% CI 1.35–1.68; rs4977756 combined P = 1.35 × 10−14, OR = 1.39, 95% CI 1.28–1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.


Nature Genetics | 2010

Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma

Gudmar Thorleifsson; G. Bragi Walters; Alex W. Hewitt; Gisli Masson; Agnar Helgason; Andrew T. DeWan; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Sigurjon A. Gudjonsson; Kristinn P. Magnusson; Hreinn Stefansson; Dennis S.C. Lam; Pancy O. S. Tam; Gudrun J Gudmundsdottir; Laura Southgate; Kathryn P. Burdon; Maria Soffia Gottfredsdottir; Micheala A. Aldred; Paul Mitchell; David St Clair; David A. Collier; Nelson L.S. Tang; Orn Sveinsson; Stuart Macgregor; Nicholas G. Martin; Angela J. Cree; Jane Gibson; Alex MacLeod; Aby Jacob; Sarah Ennis

We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10−10). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.


American Journal of Human Genetics | 2001

A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye

Darryl Y. Nishimura; Charles Searby; Wallace L.M. Alward; David S. Walton; Jamie E. Craig; David A. Mackey; Kazuhide Kawase; Adam B. Kanis; Shivanand R. Patil; Edwin M. Stone; Val C. Sheffield

Mutations in the forkhead transcription-factor gene (FOXC1), have been shown to cause defects of the anterior chamber of the eye that are associated with developmental forms of glaucoma. Discovery of these mutations was greatly facilitated by the cloning and characterization of the 6p25 breakpoint in a patient with both congenital glaucoma and a balanced-translocation event involving chromosomes 6 and 13. Here we describe the identification of novel mutations in the FOXC1 gene in patients with anterior-chamber defects of the eye. We have detected nine new mutations (eight of which are novel) in the FOXC1 gene in patients with anterior-chamber eye defects. Of these mutations, five frameshift mutations predict loss of the forkhead domain, as a result of premature termination of translation. Of particular interest is the fact that two families have a duplication of 6p25, involving the FOXC1 gene. These data suggest that both FOXC1 haploinsufficiency and increased gene dosage can cause anterior-chamber defects of the eye.


American Journal of Human Genetics | 2009

Null mutations in LTBP2 cause primary congenital glaucoma

Manir Ali; Martin McKibbin; Adam D. Booth; David A. Parry; Payal Jain; S. Amer Riazuddin; J. Fielding Hejtmancik; Shaheen N. Khan; Sabika Firasat; Mike Shires; David F. Gilmour; Katherine V. Towns; Anna Louise Murphy; Dimitar N. Azmanov; Ivailo Tournev; Sylvia Cherninkova; Hussain Jafri; Yasmin Raashid; Carmel Toomes; Jamie E. Craig; David A. Mackey; Luba Kalaydjieva; Sheikh Riazuddin; Chris F. Inglehearn

Primary congenital glaucoma (PCG) is an autosomal-recessive condition characterized by high intraocular pressure (IOP), usually within the first year of life, which potentially could lead to optic nerve damage, globe enlargement, and permanent loss of vision. To date, PCG has been linked to three loci: 2p21 (GLC3A), for which the responsible gene is CYP1B1, and 1p36 (GLC3B) and 14q24 (GLC3C), for which the genes remain to be identified. Here we report that null mutations in LTBP2 cause PCG in four consanguineous families from Pakistan and in patients of Gypsy ethnicity. LTBP2 maps to chromosome 14q24.3 but is around 1.3 Mb proximal to the documented GLC3C locus. Therefore, it remains to be determined whether LTBP2 is the GLC3C gene or whether a second adjacent gene is also implicated in PCG. LTBP2 is the largest member of the latent transforming growth factor (TGF)-beta binding protein family, which are extracellular matrix proteins with multidomain structure. It has homology to fibrillins and may have roles in cell adhesion and as a structural component of microfibrils. We confirmed localization of LTBP2 in the anterior segment of the eye, at the ciliary body, and particularly the ciliary process. These findings reveal that LTBP2 is essential for normal development of the anterior chamber of the eye, where it may have a structural role in maintaining ciliary muscle tone.


Nature Genetics | 2013

Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus

Yi Lu; Veronique Vitart; Kathryn P. Burdon; Chiea Chuen Khor; Yelena Bykhovskaya; Alireza Mirshahi; Alex W. Hewitt; Demelza Koehn; Pirro G. Hysi; Wishal D. Ramdas; Tanja Zeller; Eranga N. Vithana; Belinda K. Cornes; Wan-Ting Tay; E. Shyong Tai; Ching-Yu Cheng; Jianjun Liu; Jia Nee Foo; Seang-Mei Saw; Gudmar Thorleifsson; Kari Stefansson; David P. Dimasi; Richard Arthur Mills; Jenny Mountain; Wei Ang; René Hoehn; Virginie J. M. Verhoeven; Franz H. Grus; Roger C. W. Wolfs; Raphaële Castagné

Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.


American Journal of Ophthalmology | 2003

Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma

Wallace L.M. Alward; Young H. Kwon; Kazuhide Kawase; Jamie E. Craig; Sohan Singh Hayreh; A. Tim Johnson; Cheryl L. Khanna; Tetsuya Yamamoto; David A. Mackey; Benjamin R. Roos; Louisa M. Affatigato; Val C. Sheffield; Edwin M. Stone

PURPOSE To investigate the association of sequence variations in the optineurin (OPTN) gene in patients with open-angle glaucoma. DESIGN Prospective case control study. METHODS The OPTN gene was screened for sequence variations using a combination of single-strand conformational polymorphism analysis and automated DNA sequencing. A total of 1,299 subjects (1048 glaucoma patients and 251 controls) were screened for variations in the four portions of the gene that had been previously associated with glaucoma. A subset of these subjects (376 patients and 176 controls) was screened for variations in the entire coding sequence. Twenty-four percent of the patients and 35% of the controls were Japanese, whereas the remainder were predominantly Caucasian. Allele frequencies were compared with the Fisher exact test. RESULTS The OPTN sequence variations were not significantly associated with any form of high-tension open-angle glaucoma. One proband with familial normal-tension glaucoma was found to harbor the previously reported Glu50Lys variation. Another previously reported change, Met98Lys, was associated with normal-tension glaucoma in Japanese but not in Caucasian patients. CONCLUSIONS This study provides some additional evidence for the association of the Glu50Lys OPTN sequence variation with familial normal tension glaucoma. However, because familial normal-tension glaucoma is so rare, this change seems to be responsible for less than 0.1% of all open-angle glaucoma. The Arg545Gln variation is likely to be a nondisease-causing polymorphism. The Met98Lys change may be associated with a fraction of normal-tension glaucoma in patients of Japanese ethnicity.


Diabetes | 2009

A Systematic Meta-Analysis of Genetic Association Studies for Diabetic Retinopathy

Sotoodeh Abhary; Alex W. Hewitt; Kathryn P. Burdon; Jamie E. Craig

OBJECTIVE Diabetic retinopathy is a sight-threatening microvascular complication of diabetes with a complex multifactorial pathogenesis. A systematic meta-analysis was undertaken to collectively assess genetic studies and determine which previously investigated polymorphisms are associated with diabetic retinopathy. RESEARCH DESIGN AND METHODS All studies investigating the association of genetic variants with the development of diabetic retinopathy were identified in PubMed and ISI Web of Knowledge. Crude odds ratios (ORs) and 95% CIs were calculated for single nucleotide polymorphisms and microsatellite markers previously investigated in at least two published studies. RESULTS Twenty genes and 34 variants have previously been studied in multiple cohorts. The aldose reductase (AKR1B1) gene was found to have the largest number of polymorphisms significantly associated with diabetic retinopathy. The z−2 micro satellite was found to confer risk (OR 2.33 [95% CI 1.49–3.64], P = 2 × 10−4) in type 1 and type 2 diabetes and z+2 to confer protection (0.58 [0.36–0.93], P = 0.02) against diabetic retinopathy in type 2 diabetes regardless of ethnicity. The T allele of the AKR1B1 promoter rs759853 variant is also significantly protective against diabetic retinopathy in type 1 diabetes (0.5 [0.35–0.71], P = 1.00 × 10−4), regardless of ethnicity. These associations were also found in the white population alone (P < 0.05). Polymorphisms in NOS3, VEGF, ITGA2, and ICAM1 are also associated with diabetic retinopathy after meta-analysis. CONCLUSIONS Variations within the AKR1B1 gene are highly significantly associated with diabetic retinopathy development irrespective of ethnicity. Identification of genetic risk factors in diabetic retinopathy will assist in further understanding of this complex and debilitating diabetes complication.


British Journal of Ophthalmology | 2002

Aetiology of congenital and paediatric cataract in an Australian population

M G Wirth; Isabelle Russell-Eggitt; Jamie E. Craig; James E. Elder; David A. Mackey

Background/aim: Paediatric cataract is a major cause of childhood blindness. Several genes associated with congenital and paediatric cataracts have been identified. The aim was to determine the incidence of cataract in a population, the proportion of hereditary cataracts, the mode of inheritance, and the clinical presentation. Methods: The Royal Childrens Hospital and the Royal Victorian Eye and Ear Hospital have a referral base for almost all paediatric patients with cataracts in south eastern Australia. The database contains cases seen over the past 25 years. The medical histories of these patients were reviewed. Results: 421 patients with paediatric cataract were identified, which gives an estimated incidence of 2.2 per 10 000 births. Of the 342 affected individuals with a negative family history, 50% were diagnosed during the first year of life, and 56/342 (16%) were associated with a recognised systemic disease or syndrome. Unilateral cataract was identified in 178/342 (52%) of sporadic cases. 79 children (from 54 nuclear families) had a positive family history. Of these 54 families, 45 were recruited for clinical examination and DNA collection. Ten nuclear families were subsequently found to be related, resulting in four larger pedigrees. Thus, 39 families have been studied. The mode of inheritance was autosomal dominant in 30 families, X linked in four, autosomal recessive in two, and uncertain in three. In total, 178 affected family members were examined; of these 8% presented with unilateral cataracts and 43% were diagnosed within the first year of life. Conclusions: In the paediatric cataract population examined, approximately half of the patients were diagnosed in the first year of life. More than 18% had a positive family history of cataracts. Of patients with hereditary cataracts 8% presented with unilateral involvement. Identification of the genes that cause paediatric and congenital cataract should help clarify the aetiology of some sporadic and unilateral cataracts.

Collaboration


Dive into the Jamie E. Craig's collaboration.

Top Co-Authors

Avatar

David A. Mackey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Landers

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge