Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn P. Burdon is active.

Publication


Featured researches published by Kathryn P. Burdon.


Scientific Reports | 2016

Assessment of polygenic effects links primary open-angle glaucoma and age-related macular degeneration.

Gabriel Cuellar-Partida; Jamie E. Craig; Kathryn P. Burdon; Jie Jin Wang; Brendan J. Vote; Emmanuelle Souzeau; Ian McAllister; Timothy Isaacs; Stewart Lake; David A. Mackey; Ian Constable; Paul Mitchell; Alex W. Hewitt; Stuart MacGregor

Primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD) are leading causes of irreversible blindness. Several loci have been mapped using genome-wide association studies. Until very recently, there was no recognized overlap in the genetic contribution to AMD and POAG. At genome-wide significance level, only ABCA1 harbors associations to both diseases. Here, we investigated the genetic architecture of POAG and AMD using genome-wide array data. We estimated the heritability for POAG (h2g = 0.42 ± 0.09) and AMD (h2g = 0.71 ± 0.08). Removing known loci for POAG and AMD decreased the h2g estimates to 0.36 and 0.24, respectively. There was evidence for a positive genetic correlation between POAG and AMD (rg = 0.47 ± 0.25) which remained after removing known loci (rg = 0.64 ± 0.31). We also found that the genetic correlation between sexes for POAG was likely to be less than 1 (rg = 0.33 ± 0.24), suggesting that differences of prevalence among genders may be partly due to heritable factors.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1

Kathryn P. Burdon; Stuart MacGregor; Alex W. Hewitt; Shiwani Sharma; Glyn Chidlow; Richard Ad Mills; Patrick Danoy; Robert J. Casson; Ananth C. Viswanathan; Jimmy Z. Liu; John Landers; Anjali K. Henders; John P. M. Wood; Emmanuelle Souzeau; April Crawford; Paul Leo; Jie Jin Wang; Elena Rochtchina; Dale R. Nyholt; Nicholas G. Martin; Grant W. Montgomery; Paul Mitchell; Matthew A. Brown; David A. Mackey; Jamie E. Craig

We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10−10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10−9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10−14, OR = 1.51, 95% CI 1.35–1.68; rs4977756 combined P = 1.35 × 10−14, OR = 1.39, 95% CI 1.28–1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.


Nature Genetics | 2010

Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma

Gudmar Thorleifsson; G. Bragi Walters; Alex W. Hewitt; Gisli Masson; Agnar Helgason; Andrew T. DeWan; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Sigurjon A. Gudjonsson; Kristinn P. Magnusson; Hreinn Stefansson; Dennis S.C. Lam; Pancy O. S. Tam; Gudrun J Gudmundsdottir; Laura Southgate; Kathryn P. Burdon; Maria Soffia Gottfredsdottir; Micheala A. Aldred; Paul Mitchell; David St Clair; David A. Collier; Nelson L.S. Tang; Orn Sveinsson; Stuart Macgregor; Nicholas G. Martin; Angela J. Cree; Jane Gibson; Alex MacLeod; Aby Jacob; Sarah Ennis

We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10−10). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.


Nature Genetics | 2013

Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus

Yi Lu; Veronique Vitart; Kathryn P. Burdon; Chiea Chuen Khor; Yelena Bykhovskaya; Alireza Mirshahi; Alex W. Hewitt; Demelza Koehn; Pirro G. Hysi; Wishal D. Ramdas; Tanja Zeller; Eranga N. Vithana; Belinda K. Cornes; Wan-Ting Tay; E. Shyong Tai; Ching-Yu Cheng; Jianjun Liu; Jia Nee Foo; Seang-Mei Saw; Gudmar Thorleifsson; Kari Stefansson; David P. Dimasi; Richard Arthur Mills; Jenny Mountain; Wei Ang; René Hoehn; Virginie J. M. Verhoeven; Franz H. Grus; Roger C. W. Wolfs; Raphaële Castagné

Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.


Diabetes | 2009

A Systematic Meta-Analysis of Genetic Association Studies for Diabetic Retinopathy

Sotoodeh Abhary; Alex W. Hewitt; Kathryn P. Burdon; Jamie E. Craig

OBJECTIVE Diabetic retinopathy is a sight-threatening microvascular complication of diabetes with a complex multifactorial pathogenesis. A systematic meta-analysis was undertaken to collectively assess genetic studies and determine which previously investigated polymorphisms are associated with diabetic retinopathy. RESEARCH DESIGN AND METHODS All studies investigating the association of genetic variants with the development of diabetic retinopathy were identified in PubMed and ISI Web of Knowledge. Crude odds ratios (ORs) and 95% CIs were calculated for single nucleotide polymorphisms and microsatellite markers previously investigated in at least two published studies. RESULTS Twenty genes and 34 variants have previously been studied in multiple cohorts. The aldose reductase (AKR1B1) gene was found to have the largest number of polymorphisms significantly associated with diabetic retinopathy. The z−2 micro satellite was found to confer risk (OR 2.33 [95% CI 1.49–3.64], P = 2 × 10−4) in type 1 and type 2 diabetes and z+2 to confer protection (0.58 [0.36–0.93], P = 0.02) against diabetic retinopathy in type 2 diabetes regardless of ethnicity. The T allele of the AKR1B1 promoter rs759853 variant is also significantly protective against diabetic retinopathy in type 1 diabetes (0.5 [0.35–0.71], P = 1.00 × 10−4), regardless of ethnicity. These associations were also found in the white population alone (P < 0.05). Polymorphisms in NOS3, VEGF, ITGA2, and ICAM1 are also associated with diabetic retinopathy after meta-analysis. CONCLUSIONS Variations within the AKR1B1 gene are highly significantly associated with diabetic retinopathy development irrespective of ethnicity. Identification of genetic risk factors in diabetic retinopathy will assist in further understanding of this complex and debilitating diabetes complication.


PLOS Genetics | 2010

Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness.

Yi Lu; David P. Dimasi; Pirro G. Hysi; Alex W. Hewitt; Kathryn P. Burdon; Tze’Yo Toh; Jonathan B Ruddle; Yi-Ju Li; Paul Mitchell; Paul R. Healey; Grant W. Montgomery; Narelle K. Hansell; Tim D. Spector; Nicholas G. Martin; Terri L. Young; Christopher J. Hammond; Stuart Macgregor; Jamie E. Craig; David A. Mackey

Central corneal thickness (CCT), one of the most highly heritable human traits (h2 typically>0.9), is important for the diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association studies in five cohorts from Australia and the United Kingdom (total N = 5058). Three cohorts were based on individually genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for association with CCT. The locus on chromosome 13 (nearest gene FOXO1) had an overall meta-analysis p-value for all the individually genotyped samples of 4.6×10−10. The locus on chromosome 16 was associated with CCT with p = 8.95×10−11. The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea Syndrome (BCS), a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT variation in the general population.


Nature Genetics | 2014

Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

Pirro G. Hysi; Ching-Yu Cheng; Henriet Springelkamp; Stuart MacGregor; Jessica N. Cooke Bailey; Robert Wojciechowski; Veronique Vitart; Abhishek Nag; Alex W. Hewitt; René Höhn; Cristina Venturini; Alireza Mirshahi; Wishal D. Ramdas; Gudmar Thorleifsson; Eranga N. Vithana; Chiea Chuen Khor; Arni B Stefansson; Jiemin Liao; Jonathan L. Haines; Najaf Amin; Ya Xing Wang; Philipp S. Wild; Ayse B Ozel; Jun Li; Brian W. Fleck; Tanja Zeller; Sandra E Staffieri; Yik-Ying Teo; Gabriel Cuellar-Partida; Xiaoyan Luo

Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10−8 for rs6445055), two on chromosome 9 (P = 2.80 × 10−11 for rs2472493 near ABCA1 and P = 6.39 × 10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10−11 for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.


Nature Genetics | 2015

Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

Matthew H. Law; D. Timothy Bishop; Jeffrey E. Lee; Myriam Brossard; Nicholas G. Martin; Eric K. Moses; Fengju Song; Jennifer H. Barrett; Rajiv Kumar; Douglas F. Easton; Paul Pharoah; Anthony J. Swerdlow; Katerina P. Kypreou; John C. Taylor; Mark Harland; Juliette Randerson-Moor; Lars A. Akslen; Per Arne Andresen; M.-F. Avril; Esther Azizi; Giovanna Bianchi Scarrà; Kevin M. Brown; Tadeusz Dębniak; David L. Duffy; David E. Elder; Shenying Fang; Eitan Friedman; Pilar Galan; Paola Ghiorzo; Elizabeth M. Gillanders

Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10−8), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.


Nature Genetics | 2016

Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma

Jessica N. Cooke Bailey; Stephanie Loomis; Jae H. Kang; R. Rand Allingham; Puya Gharahkhani; Chiea Chuen Khor; Kathryn P. Burdon; Hugues Aschard; Daniel I. Chasman; Robert P. Igo; Pirro G. Hysi; Craig A. Glastonbury; Allison E. Ashley-Koch; Murray H. Brilliant; Andrew Anand Brown; Donald L. Budenz; Alfonso Buil; Ching-Yu Cheng; Hyon K. Choi; William G. Christen; Gary C. Curhan; Immaculata De Vivo; John H. Fingert; Paul J. Foster; Charles S. Fuchs; Douglas E. Gaasterland; Terry Gaasterland; Alex W. Hewitt; Frank B. Hu; David J. Hunter

Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10−11) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10−10); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10−10). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.


Investigative Ophthalmology & Visual Science | 2011

Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus

Kathryn P. Burdon; Stuart MacGregor; Yelena Bykhovskaya; Sharhbanou Javadiyan; Xiaohui Li; Kate J. Laurie; Dorota Muszynska; Richard Lindsay; Judith Lechner; Talin Haritunians; Anjali K. Henders; Durga P. Dash; David S. Siscovick; Seema Anand; Anthony J. Aldave; Douglas John Coster; Loretta Szczotka-Flynn; Richard Arthur Mills; Sudha K. Iyengar; Kent D. Taylor; Tony Phillips; Grant W. Montgomery; Jerome I. Rotter; Alex W. Hewitt; Shiwani Sharma; Yaron S. Rabinowitz; Colin E. Willoughby; Jamie E. Craig

PURPOSE Keratoconus is a progressive disorder of the cornea that can lead to severe visual impairment or blindness. Although several genomic regions have been linked to rare familial forms of keratoconus, no genes have yet been definitively identified for common forms of the disease. METHODS Two genome-wide association scans were undertaken in parallel. The first used pooled DNA from an Australian cohort, followed by typing of top-ranked single-nucleotide polymorphisms (SNPs) in individual DNA samples. The second was conducted in individually genotyped patients, and controls from the USA. Tag SNPs around the hepatocyte growth factor (HGF) gene were typed in three additional replication cohorts. Serum levels of HGF protein in normal individuals were assessed with ELISA and correlated with genotype. RESULTS The only SNP observed to be associated in both the pooled discovery and primary replication cohort was rs1014091, located upstream of the HGF gene. The nearby SNP rs3735520 was found to be associated in the individually typed discovery cohort (P = 6.1 × 10(-7)). Genotyping of tag SNPs around HGF revealed association at rs3735520 and rs17501108/rs1014091 in four of the five cohorts. Meta-analysis of all five datasets together yielded suggestive P values for rs3735520 (P = 9.9 × 10(-7)) and rs17501108 (P = 9.9 × 10(-5)). In addition, SNP rs3735520 was found to be associated with serum HGF level in normal individuals (P = 0.036). CONCLUSIONS Taken together, these results implicate genetic variation at the HGF locus with keratoconus susceptibility.

Collaboration


Dive into the Kathryn P. Burdon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Mackey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart MacGregor

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge