Alexandra M. Ortiz
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandra M. Ortiz.
Nature Medicine | 2011
Mirko Paiardini; Barbara Cervasi; Elane Reyes-Aviles; Luca Micci; Alexandra M. Ortiz; Ann Chahroudi; Carol L. Vinton; Shari N. Gordon; Steven E. Bosinger; Nicholas Francella; Paul L Hallberg; Elizabeth M. Cramer; Timothy E. Schlub; Ming Liang Chan; Nadeene E. Riddick; Ronald G. Collman; Cristian Apetrei; Ivona Pandrea; James G. Else; Jan Münch; Frank Kirchhoff; Miles P. Davenport; Jason M. Brenchley; Guido Silvestri
Naturally simian immunodeficiency virus (SIV)-infected sooty mangabeys do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4+CCR5+ T cells is lower in sooty mangabeys compared to humans and macaques. Here we found that, after in vitro stimulation, sooty mangabey CD4+ T cells fail to upregulate CCR5 and that this phenomenon is more pronounced in CD4+ central memory T cells (TCM cells). CD4+ T cell activation was similarly uncoupled from CCR5 expression in sooty mangabeys in vivo during acute SIV infection and the homeostatic proliferation that follows antibody-mediated CD4+ T cell depletion. Sooty mangabey CD4+ TCM cells that express low amounts of CCR5 showed reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4+ TCM cells of rhesus macaques. These data suggest that low CCR5 expression on sooty mangabey CD4+ T cells favors the preservation of CD4+ T cell homeostasis and promotes an AIDS-free status by protecting CD4+ TCM cells from direct virus infection.
Mucosal Immunology | 2012
Nichole R. Klatt; Jacob D. Estes; Xiaoyong Sun; Alexandra M. Ortiz; John S. Barber; Levelle D. Harris; Cervasi B; Lauren K. Yokomizo; Li Pan; Carol L. Vinton; Brian Tabb; Que Dang; Vanessa M. Hirsch; Galit Alter; Yasmine Belkaid; Jeffrey D. Lifson; Guido Silvestri; Joshua D. Milner; Mirko Paiardini; Elias K. Haddad; Jason M. Brenchley
Human immunodeficiency virus (HIV) and Simian immunodeficiency virus (SIV) disease progression is associated with multifocal damage to the gastrointestinal tract epithelial barrier that correlates with microbial translocation and persistent pathological immune activation, but the underlying mechanisms remain unclear. Investigating alterations in mucosal immunity during SIV infection, we found that damage to the colonic epithelial barrier was associated with loss of multiple lineages of interleukin (IL)-17-producing lymphocytes, cells that microarray analysis showed expressed genes important for enterocyte homeostasis, including IL-22. IL-22-producing lymphocytes were also lost after SIV infection. Potentially explaining coordinate loss of these distinct populations, we also observed loss of CD103+ dendritic cells (DCs) after SIV infection, which associated with the loss of IL-17- and IL-22-producing lymphocytes. CD103+ DCs expressed genes associated with promotion of IL-17/IL-22+ cells, and coculture of CD103+ DCs and naïve T cells led to increased IL17A and RORc expression in differentiating T cells. These results reveal complex interactions between mucosal immune cell subsets providing potential mechanistic insights into mechanisms of mucosal immune dysregulation during HIV/SIV infection, and offer hints for development of novel therapeutic strategies to address this aspect of AIDS virus pathogenesis.
Cell | 2015
Denise Morais da Fonseca; Timothy W. Hand; Seong-Ji Han; Michael Y. Gerner; Arielle Glatman Zaretsky; Allyson L. Byrd; Oliver J. Harrison; Alexandra M. Ortiz; Mariam Quiñones; Giorgio Trinchieri; Jason M. Brenchley; Igor E. Brodsky; Ronald N. Germain; Gwendalyn J. Randolph; Yasmine Belkaid
Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.
Journal of Clinical Investigation | 2011
Alexandra M. Ortiz; Nichole R. Klatt; Bing Li; Yanjie Yi; Brian Tabb; Xing Pei Hao; Lawrence R. Sternberg; Benton Lawson; Paul M. Carnathan; Elizabeth M. Cramer; Jessica C. Engram; Dawn M. Little; Elena V. Ryzhova; Francisco Gonzalez-Scarano; Mirko Paiardini; Aftab A. Ansari; Sarah J. Ratcliffe; James G. Else; Jason M. Brenchley; Ronald G. Collman; Jacob D. Estes; Cynthia A. Derdeyn; Guido Silvestri
CD4+ T cells play a central role in the immunopathogenesis of HIV/AIDS, and their depletion during chronic HIV infection is a hallmark of disease progression. However, the relative contribution of CD4+ T cells as mediators of antiviral immune responses and targets for virus replication is still unclear. Here, we have generated data in SIV-infected rhesus macaques (RMs) that suggest that CD4+ T cells are essential in establishing control of virus replication during acute infection. To directly assess the role of CD4+ T cells during primary SIV infection, we in vivo depleted these cells from RMs prior to infecting the primates with a pathogenic strain of SIV. Compared with undepleted animals, CD4+ lymphocyte-depleted RMs showed a similar peak of viremia, but did not manifest any post-peak decline of virus replication despite CD8+ T cell- and B cell-mediated SIV-specific immune responses comparable to those observed in control animals. Interestingly, depleted animals displayed rapid disease progression, which was associated with increased virus replication in non-T cells as well as the emergence of CD4-independent SIV-envelopes. Our results suggest that the antiviral CD4+ T cell response may play an important role in limiting SIV replication, which has implications for the design of HIV vaccines.
Mucosal Immunology | 2012
Nichole R. Klatt; Jacob D. Estes; Xiaoyong Sun; Alexandra M. Ortiz; John S. Barber; Levelle D. Harris; Barbara Cervasi; Lauren K. Yokomizo; Li Pan; Carol L. Vinton; Brian Tabb; Que Dang; Vanessa M. Hirsch; Galit Alter; Yasmine Belkaid; Jeffrey D. Lifson; Guido Silvestri; Joshua D. Milner; Mirko Paiardini; Elias K. Haddad; Jason M. Brenchley
Human immunodeficiency virus (HIV) and Simian immunodeficiency virus (SIV) disease progression is associated with multifocal damage to the gastrointestinal tract epithelial barrier that correlates with microbial translocation and persistent pathological immune activation, but the underlying mechanisms remain unclear. Investigating alterations in mucosal immunity during SIV infection, we found that damage to the colonic epithelial barrier was associated with loss of multiple lineages of interleukin (IL)-17-producing lymphocytes, cells that microarray analysis showed expressed genes important for enterocyte homeostasis, including IL-22. IL-22-producing lymphocytes were also lost after SIV infection. Potentially explaining coordinate loss of these distinct populations, we also observed loss of CD103+ dendritic cells (DCs) after SIV infection, which associated with the loss of IL-17- and IL-22-producing lymphocytes. CD103+ DCs expressed genes associated with promotion of IL-17/IL-22+ cells, and coculture of CD103+ DCs and naïve T cells led to increased IL17A and RORc expression in differentiating T cells. These results reveal complex interactions between mucosal immune cell subsets providing potential mechanistic insights into mechanisms of mucosal immune dysregulation during HIV/SIV infection, and offer hints for development of novel therapeutic strategies to address this aspect of AIDS virus pathogenesis.
Immunity | 2014
Nina Calantone; Fan Wu; Zachary Klase; Claire Deleage; Molly R. Perkins; Kenta Matsuda; Elizabeth A. Thompson; Alexandra M. Ortiz; Carol L. Vinton; Ilnour Ourmanov; Karin Loré; Jacob D. Estes; Vanessa M. Hirsch; Jason M. Brenchley
The viral accessory protein Vpx, expressed by certain simian and human immunodeficiency viruses (SIVs and HIVs), is thought to improve viral infectivity of myeloid cells. We infected 35 Asian macaques and African green monkeys with viruses that do or do not express Vpx and examined viral targeting of cells in vivo. While lack of Vpx expression affected viral dynamics in vivo, with decreased viral loads and infection of CD4⁺ T cells, Vpx expression had no detectable effect on infectivity of myeloid cells. Moreover, viral DNA was observed only within myeloid cells in tissues not massively depleted of CD4⁺ T cells. Myeloid cells containing viral DNA also showed evidence of T cell phagocytosis in vivo, suggesting that their viral DNA may be attributed to phagocytosis of SIV-infected T cells. These data suggest that myeloid cells are not a major source of SIV in vivo, irrespective of Vpx expression.
Mucosal Immunology | 2015
Zachary Klase; Alexandra M. Ortiz; Claire Deleage; Joseph C. Mudd; Mariam Quiñones; Elias Schwartzman; Nichole R. Klatt; Jacob D. Estes; Jason M. Brenchley
Infection of gut-resident CD4+ memory T cells during acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection is associated with rapid loss of these cells and damage to the epithelial barrier. Damage to the epithelial barrier allows translocation of microbial products from the intestinal lumen into the body. Immune activation caused by these microbial products has been associated with disease progression. Although microbial translocation has been demonstrated in SIV-infected nonhuman primates, the identity of translocating bacteria has not been determined. In this study we examined the communities of bacteria both within the gastrointestinal (GI) tract and systemic tissues of both healthy and experimentally SIV-infected Asian macaques. Although there were only modest changes in the GI tract-associated microbiome resulting from infection, there is substantial dysbiosis after administration of antiretrovirals. Analysis of bacterial DNA isolated from tissues of infected animals revealed a preference for the phylum Proteobacteria, suggesting that they preferentially translocate. Consistent with this finding, we observed increased metabolic activity of Proteobacterial species within the colonic lumen of SIV-infected animals. Overall, these data provide insights into disease progression and suggest that therapies aimed at altering the composition and metabolic activity of the GI tract microbiome could benefit chronically HIV-infected individuals, particularly those on antiretroviral therapies.
PLOS Pathogens | 2014
Luca Micci; Xavier Alvarez; Robin I. Iriele; Alexandra M. Ortiz; Emily S. Ryan; Colleen S. McGary; Claire Deleage; Brigitte B. McAtee; Tianyu He; Cristian Apetrei; Kirk A. Easley; Savita Pahwa; Ronald G. Collman; Cynthia A. Derdeyn; Miles P. Davenport; Jacob D. Estes; Guido Silvestri; Andrew A. Lackner; Mirko Paiardini
In rhesus macaques (RMs), experimental depletion of CD4+ T-cells prior to SIV infection results in higher viremia and emergence of CD4-independent SIV-envelopes. In this study we used the rhesus recombinant anti-CD4 antibody CD4R1 to deplete RM CD4+ T-cells prior to SIVmac251 infection and investigate the sources of the increased viral burden and the lifespan of productively infected cells. CD4-depleted animals showed (i) set-point viral load two-logs higher than controls; (ii) macrophages constituting 80% of all SIV vRNA+ cells in lymph node and mucosal tissues; (iii) substantial expansion of pro-inflammatory monocytes; (iv) aberrant activation and infection of microglial cells; and (v) lifespan of productively infected cells significantly longer in comparison to controls, but markedly shorter than previously estimated for macrophages. The net effect of CD4+ T-cell depletion is an inability to control SIV replication and a shift in the tropism of infected cells to macrophages, microglia, and, potentially, other CD4-low cells which all appear to have a shortened in vivo lifespan. We believe these findings have important implications for HIV eradication studies.
Brain Behavior and Immunity | 2009
Mirko Paiardini; Jackie Hoffman; Barbara Cervasi; Alexandra M. Ortiz; Fawn Stroud; Guido Silvestri; Mark E. Wilson
Increased vulnerability to psychosocial stressors likely predisposes individuals to decreased immune function and inability to control pathogens. While many factors influence the susceptibility to psychosocial stress, genetic polymorphisms may modify individual reactivity to environmental stressors. The present study evaluated how immune function was altered by the interaction of in polymorphisms in the gene that encodes the serotonin reuptake transporter (5HTT) and the psychosocial stress imposed by social subordination in adult female rhesus monkeys. Subjects were dominant and subordinate females that carried both alleles of the long promoter variant (l/l) of the 5HTT gene, and dominant and subordinate that had at least one allele for the short promoter length variant (l/s or s/s, s-variant). Plasma cortisol was higher in subordinate females in response to a social separation paradigm, confirming their increased reactivity to psychosocial stressors. Subordinate females exhibited increased T-cell activation and proliferation regardless of genotype. Despite these higher levels of T-cell proliferation and activation, subordinate females showed significantly lower frequency of T-cells. This latter finding may be due to an increased susceptibility to cell death, as indicated by higher levels of annexin-V+ CD4+ and CD8+ T-cells in s-variant subordinate compared to dominant females. These findings indicate that subordinate rhesus monkeys with the s-variant 5HTT genotype exhibit decreased T-cell numbers perhaps compromising their ability to mount an immune response to pathogens. These data underscore the importance for considering gene polymorphisms that influence emotional reactivity to better understand susceptibility to disease.
Mucosal Immunology | 2016
Alexandra M. Ortiz; Zachary Klase; Sarah R. DiNapoli; Ivan Vujkovic-Cvijin; Kirby Carmack; Molly R. Perkins; Nina Calantone; Carol L. Vinton; Nadeene E. Riddick; John R. Gallagher; Nichole R. Klatt; Joseph M. McCune; Jacob D. Estes; Mirko Paiardini; Jason M. Brenchley
Increased mortality in antiretroviral (ARV)-treated, HIV-infected individuals has been attributed to persistent immune dysfunction, in part due to abnormalities at the gastrointestinal barrier. In particular, the poor reconstitution of gastrointestinal Th17 cells correlates with residual translocation of dysbiotic, immunostimulatory microflora across a compromised intestinal epithelial barrier. We have previously demonstrated that oral probiotics promote increased intestinal CD4+ T-cell reconstitution during ARV treatment in a non-human primate model of HIV infection; however, essential mucosal T-cell subsets, such as Th17 cells, had limited recovery. Here, we sought to promote Th17 cell recovery by administering interleukin (IL)-21 to a limited number of ARV-treated, probiotic-supplemented, Simian Immunodeficiency Virus (SIV)-infected pigtailed macaques. We demonstrate that probiotic and IL-21 supplementation of ARVs are associated with enhanced polyfunctional Th17 expansion and reduced markers of microbial translocation and dysbiosis as compared with infected controls receiving ARVs alone. Importantly, treatment resulted in fewer morbidities compared with controls, and was independent of increased immune activation or loss of viral suppression. We propose that combining ARVs with therapeutics aimed at restoring intestinal stasis may significantly improve disease prognosis of ARV-treated, HIV-infected individuals.