Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Cavazzoni is active.

Publication


Featured researches published by Andrea Cavazzoni.


The Journal of Physiology | 2002

Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis

Roberta R. Alfieri; Andrea Cavazzoni; Pier Giorgio Petronini; Mara A. Bonelli; Alessandro E. Caccamo; Angelo F. Borghetti; Kenneth P. Wheeler

Porcine pulmonary arterial endothelial cells accumulated myo‐inositol and taurine, as well as betaine, during adaptation to hypertonic stress. The cells grew and maintained their normal morphology during culture in hypertonic (0.5 osmol (kg H2O)−1) medium that contained osmolytes such as betaine, myo‐inositol or taurine at concentrations close to reported physiological values. The cells did not grow well in hypertonic medium depleted of potential compatible osmolytes. After a few days, cell density decreased by about 50 % and many cells rounded up and detached from the plates, their nuclei showing clear apoptotic morphology. The caspase‐3 activity of the cells also increased dramatically under these conditions, but remained negligibly low when betaine and myo‐inositol were added to the medium. Addition of betaine and myo‐inositol to hypertonic medium depleted of compatible osmolytes increased the number of colonies remaining after 12 days of culture; with each solute at 30–100 μmol l−1 the number increased about sixfold. In the absence of compatible osmolytes, increased mRNA levels and corresponding activities of betaine/γ‐aminobutyric acid transporter (BGT1) and sodium/myo‐inositol transporter (SMIT) induced by hypertonicity remained high after 72 h incubation, whereas they were down regulated in the presence of betaine and myo‐inositol. Similarly, the down regulation of the amino acid System A transporter (ATA2) was markedly slowed in the absence of compatible osmolytes. We conclude that these compatible osmolytes at concentrations close to physiological values enable the endothelial cells to adapt to hypertonic stress, protecting them from apoptosis, and also modulate the adaptation process.


Biochemical Pharmacology | 2009

Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines

Silvia La Monica; Maricla Galetti; Roberta R. Alfieri; Andrea Cavazzoni; Andrea Ardizzoni; Marcello Tiseo; Marzia Capelletti; Matteo Goldoni; Sara Tagliaferri; Antonio Mutti; Claudia Fumarola; Mara A. Bonelli; Daniele Generali; Pier Giorgio Petronini

The epidermal growth factor receptor (EGFR) is a validated target for therapy in non-small cell lung cancer (NSCLC). Most patients, however, either do not benefit or develop resistance to specific inhibitors of the EGFR tyrosine kinase activity, such as gefitinib or erlotinib. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation and survival pathways and has been associated with resistance to EGFR tyrosine kinase inhibitors. In this study, we assessed the effects of combining the mTOR inhibitor everolimus (RAD001) with gefitinib on a panel of NSCLC cell lines characterized by gefitinib resistance and able to maintain S6K phosphorylation after gefitinib treatment. Everolimus plus gefitinib induced a significant decrease in the activation of MAPK and mTOR signaling pathways downstream of EGFR and resulted in a growth-inhibitory effect rather than in an enhancement of cell death. A synergistic effect was observed in those cell lines characterized by high proliferative index and low doubling time. These data suggest that treatment with everolimus and gefitinib might be of value in the treatment of selected NSCLC patients that exhibit high tumor proliferative activity.


Cancer Letters | 2012

Overcoming acquired resistance to letrozole by targeting the PI3K/AKT/mTOR pathway in breast cancer cell clones

Andrea Cavazzoni; Mara A. Bonelli; Claudia Fumarola; Silvia La Monica; Kinda Airoud; Ramona Bertoni; Roberta R. Alfieri; Maricla Galetti; Stefano Tramonti; Elena Galvani; Adrian L. Harris; Lesley-Ann Martin; Daniele Andreis; Alberto Bottini; Daniele Generali; Pier Giorgio Petronini

Development of resistance to endocrine therapy is a clinical issue in estrogen receptor (ER)-positive breast cancer. Here we show that persistent activation of AKT/mTOR signaling is crucial to the acquisition of letrozole resistance in cell clones generated from MCF-7/AROM-1 aromatase-expressing breast cancer cells after prolonged letrozole exposure. ERα plays a marginal role in this context. As a proof of concept, the association between PI3K/AKT/mTOR signaling and insensitivity to endocrine therapies was confirmed in breast cancer patients who developed early letrozole resistance in neoadjuvant setting. In addition our results suggest that, regardless of the mechanism mediating the activation of AKT/mTOR pathway, either RAD001 or NVP-BEZ235 treatment may represent a promising strategy to overcome acquired resistance to letrozole in breast cancers dependent on AKT/mTOR signaling.


The Journal of Physiology | 2006

Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress.

Roberta R. Alfieri; Mara A. Bonelli; Andrea Cavazzoni; Maurizio Brigotti; Claudia Fumarola; Piero Sestili; Paola Mozzoni; Giuseppe De Palma; Antonio Mutti; Domenica Carnicelli; Federica Vacondio; Claudia Silva; Angelo F. Borghetti; Kenneth P. Wheeler; Pier Giorgio Petronini

Exposure of C2C12 muscle cells to hypertonic stress induced an increase in cell content of creatine transporter mRNA and of creatine transport activity, which peaked after about 24 h incubation at 0.45 osmol (kg H2O)−1. This induction of transport activity was prevented by addition of either cycloheximide, to inhibit protein synthesis, or of actinomycin D, to inhibit RNA synthesis. Creatine uptake by these cells is largely Na+ dependent and kinetic analysis revealed that its increase under hypertonic conditions resulted from an increase in Vmax of the Na+‐dependent component, with no significant change in the Km value of about 75 μmol l−1. Quantitative real‐time PCR revealed a more than threefold increase in the expression of creatine transporter mRNA in cells exposed to hypertonicity. Creatine supplementation significantly enhanced survival of C2C12 cells incubated under hypertonic conditions and its effect was similar to that obtained with the well known compatible osmolytes, betaine, taurine and myo‐inositol. This effect seemed not to be linked to the energy status of the C2C12 cells because hypertonic incubation caused a decrease in their ATP content, with or without the addition of creatine at 20 mmol l−1 to the medium. This induction of creatine transport activity by hypertonicity is not confined to muscle cells: a similar induction was shown in porcine endothelial cells.


Molecular Cancer Therapeutics | 2008

Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines

Andrea Cavazzoni; Roberta R. Alfieri; Caterina Carmi; Valentina Zuliani; Maricla Galetti; Claudia Fumarola; Raffaele Frazzi; Mara A. Bonelli; Fabrizio Bordi; Alessio Lodola; Marco Mor; Pier Giorgio Petronini

In this study, we examined the mechanism of action of the novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 5-benzylidene-hydantoin UPR1024, whose structure was designed to interact at the ATP-binding site of EGFR. The compound had antiproliferative and proapoptotic effects when tested on the non–small cell lung cancer cell line A549. The growth inhibitory effect was associated with an accumulation of the cells in the S phase of the cell cycle. Moreover, UPR1024 induced significant level of DNA strand breaks associated with increased expression of p53 and p21WAF1 proteins, suggesting an additive mechanism of action. The presence of wild-type p53 improved the drug efficacy, although the effect was also detectable in p53 null cells. We also noted apoptotic cell death after treatment with UPR1024 at concentrations above 10 μmol/L for >24 h, with involvement of both the extrinsic and intrinsic pathways. The present data show that UPR1024 may be considered a combi-molecule capable of both blocking EGFR tyrosine kinase activity and inducing genomic DNA damage. UPR1024 or its derivatives might serve as a basis for development of drugs for the treatment of lung cancer in patients resistant to classic tyrosine kinase inhibitors. [Mol Cancer Ther 2008;7(2):361–70]


Bioorganic & Medicinal Chemistry | 2010

Synthesis and biological evaluation of tetracyclic fluoroquinolones as antibacterial and anticancer agents

Salah A. Al-Trawneh; Jalal A. Zahra; Marwan R. Kamal; Mustafa M. El-Abadelah; Franca Zani; Matteo Incerti; Andrea Cavazzoni; Roberta R. Alfieri; Pier Giorgio Petronini; Paola Vicini

A simple and efficient synthesis of 6-fluoro-4-oxopyrido[2,3-a]carbazole-3-carboxylic acids (13a-e) and a structurally related 6-fluoro-4-oxothieno[2,3:4,5]pyrrolo[3,2-h]quinoline (13f) was achieved via Stille arylation of 7-chloro-6-fluoro-8-nitro-4-oxoquinoline-3-carboxylate and a subsequent microwave-assisted phosphite-mediated Cadogan reaction. The new compounds were tested for their in vitro antimicrobial and antiproliferative activity. The ability of 13a-f to inhibit the activity of DNA gyrase and topoisomerase IV was also investigated. The thieno isostere (13f) emerged as the most active antibacterial, while the 9-fluoro derivative (13e) was the most potent against multidrug-resistant staphylococci. Compounds 13a, 13c-f displayed growth inhibition against MCF-7 breast tumor and A549 non-small cell lung cancer cells coupled with an absence of cytotoxicity toward normal human-derm fibroblasts (HuDe). Compound 13e was the most active anticancer against MCF-7 cells, with greater potency than ellipticine (IC(50) 0.8 and 1.6muM, respectively). The most active compounds in this series show promise as dual acting anticancer and antibacterial chemotherapeutics.


Journal of Medicinal Chemistry | 2010

Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion.

Caterina Carmi; Andrea Cavazzoni; Stefano Vezzosi; Fabrizio Bordi; Federica Vacondio; Claudia Silva; Silvia Rivara; Alessio Lodola; Roberta R. Alfieri; Silvia La Monica; Maricla Galetti; Andrea Ardizzoni; Pier Giorgio Petronini; Marco Mor

Irreversible EGFR inhibitors can circumvent acquired resistance to first-generation reversible, ATP-competitive inhibitors in the treatment of non-small-cell lung cancer. They contain both a driver group, which assures target recognition, and a warhead, generally an acrylamide or propargylamide fragment that binds covalently to Cys797 within the kinase domain of EGFR. We performed a systematic exploration of the role for the warhead group, introducing different cysteine-trapping fragments at position 6 of a traditional 4-anilinoquinazoline scaffold. We found that different reactive groups, including epoxyamides (compounds 3-6) and phenoxyacetamides (compounds 7-9), were able to irreversibly inhibit EGFR. In particular, at significant lower concentrations than gefitinib (1), (2R,3R)-N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(piperidin-1-ylmethyl)oxirane-2-carboxamide (6) inhibited EGFR autophosphorylation and downstream signaling pathways, suppressed proliferation, and induced apoptosis in gefitinib-resistant NSCLC H1975 cells, harboring the T790M mutation in EGFR.


Journal of Medicinal Chemistry | 2012

Irreversible inhibition of epidermal growth factor receptor activity by 3-aminopropanamides.

Caterina Carmi; Elena Galvani; Federica Vacondio; Silvia Rivara; Alessio Lodola; Simonetta Russo; Stefania Aiello; Fabrizio Bordi; Gabriele Costantino; Andrea Cavazzoni; Roberta R. Alfieri; Andrea Ardizzoni; Pier Giorgio Petronini; Marco Mor

Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with off-targets. We describe here a new series of irreversible inhibitors containing a 3-aminopropanamide linked in position 6 to 4-anilinoquinazoline or 4-anilinoquinoline-3-carbonitrile driving portions. Some of these compounds proved to be as efficient as their acrylamide analogues in inhibiting EGFR-TK (TK = tyrosine kinase) autophosphorylation in A549 lung cancer cells. Moreover, several 3-aminopropanamides suppressed proliferation of gefitinib-resistant H1975 cells, harboring the T790M mutation in EGFR, at significantly lower concentrations than did gefitinib. A prototypical compound, N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(dimethylamino)propanamide (5), did not show covalent binding to cell-free EGFR-TK in a fluorescence assay, while it underwent selective activation in the intracellular environment, releasing an acrylamide derivative which can react with thiol groups.


Oncogene | 2004

Dose-dependent effect of FHIT-inducible expression in Calu-1 lung cancer cell line

Andrea Cavazzoni; Pier Giorgio Petronini; Maricla Galetti; Luca Roz; Francesca Andriani; Paolo Carbognani; Michele Rusca; Claudia Fumarola; Roberta R. Alfieri; Gabriella Sozzi

Abnormalities in the expression of the tumour suppressor fragile histidine triad (FHIT) gene have been reported in a variety of human tumours, including lung cancer and restoration of its expression in cancer cell lines resulted in the inhibition of proliferation and apoptosis induction. Most of the studies that have assigned a proapoptotic role to the FHIT gene were performed in adenoviral-FHIT-transduced cancer cells expressing high levels of the Fhit protein. The present work was the first study designed to investigate the effects of FHIT gene replacement in a human FHIT-negative non-small-cell lung cancer (NSCLC) cell line (Calu-1) by using a hormone-inducible expression system that allows tight modulation of the transgene expression. Through this approach, we demonstrated that a prolonged induction was required to accumulate the Fhit protein at levels adequate to promote a significant decrease of cell proliferation. Analysis of cell-cycle phase distribution showed an accumulation of cells in the G0/G1u2009phase and a concomitant decrease in the Su2009phase. Moreover, an upregulation of p21waf1 transcript was found, which could account for the alteration of the cycling properties of the cells. The growth-inhibitory effects observed were not associated with apoptosis appearance, and although in these conditions the Fhit protein content was higher than in normal bronchial human epithelial cells (NHBE), it was still significantly lower than the level capable of inducing apoptosis in Calu-1 cells after adenoviral-mediated FHIT gene transfer. These results indicate that the tumour suppressor properties of Fhit are strictly related to its expression level and show that the Fhit protein has a dose-dependent antiproliferative effect on the Fhit-negative Calu-1 lung cancer cell line.


Mini-reviews in Medicinal Chemistry | 2011

Epidermal Growth Factor Receptor Irreversible Inhibitors: Chemical Exploration of the Cysteine-Trap Portion

Caterina Carmi; Alessio Lodola; Silvia Rivara; Federica Vacondio; Andrea Cavazzoni; Roberta R. Alfieri; Andrea Ardizzoni; Pier Giorgio Petronini; Marco Mor

Covalent EGFR irreversible inhibitors showed promising potential for the treatment of gefitinib-resistant tumors and for imaging purposes. They contain a cysteine-reactive portion forming a covalent bond with the protein. Irreversible kinase inhibitors have been advanced to clinical studies, mostly characterized by an acrylamide or butynamide warhead. However, the clinical usefulness of these compounds has been hampered by resistances, toxicity and pharmacokinetic problems. Investigation on the structure-activity and structure-reactivity relationships may provide useful information for compounds with improved selectivity and pharmacokinetic properties. This review focuses on the exploration of the cysteine-trap portions able to irreversibly inhibit EGFR and other erbB receptors.

Collaboration


Dive into the Andrea Cavazzoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge