Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia La Monica is active.

Publication


Featured researches published by Silvia La Monica.


Biochemical Pharmacology | 2009

Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines

Silvia La Monica; Maricla Galetti; Roberta R. Alfieri; Andrea Cavazzoni; Andrea Ardizzoni; Marcello Tiseo; Marzia Capelletti; Matteo Goldoni; Sara Tagliaferri; Antonio Mutti; Claudia Fumarola; Mara A. Bonelli; Daniele Generali; Pier Giorgio Petronini

The epidermal growth factor receptor (EGFR) is a validated target for therapy in non-small cell lung cancer (NSCLC). Most patients, however, either do not benefit or develop resistance to specific inhibitors of the EGFR tyrosine kinase activity, such as gefitinib or erlotinib. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation and survival pathways and has been associated with resistance to EGFR tyrosine kinase inhibitors. In this study, we assessed the effects of combining the mTOR inhibitor everolimus (RAD001) with gefitinib on a panel of NSCLC cell lines characterized by gefitinib resistance and able to maintain S6K phosphorylation after gefitinib treatment. Everolimus plus gefitinib induced a significant decrease in the activation of MAPK and mTOR signaling pathways downstream of EGFR and resulted in a growth-inhibitory effect rather than in an enhancement of cell death. A synergistic effect was observed in those cell lines characterized by high proliferative index and low doubling time. These data suggest that treatment with everolimus and gefitinib might be of value in the treatment of selected NSCLC patients that exhibit high tumor proliferative activity.


Journal of Cellular Physiology | 2005

Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage.

Claudia Fumarola; Silvia La Monica; Guido G. Guidotti

Mammalian target of rapamycin (mTOR) mediates a signaling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth rate, participating to a versatile checkpoint that inspects the energy status of the cell. The pathway is activated by branched‐chain amino acids (BCAA), leucine being the most effective, whereas amino acid dearth and ATP shortage lead to its deactivation. Glutamine‐ or amino acid‐deprivation and hyperosmotic stress induce a fast cell shrinkage (with marked decrease of the intracellular water volume) associated to mTOR‐dependent S6K1 dephosphorylation. Using cultured Jurkat cells, we have measured the changes of cell content and intracellular concentration of ATP, of relevant amino acids (BCAA) and of ninhydrin‐positive substances (NPS, as measure of NH2‐bearing organic osmolytes) under conditions that deactivate (leucine‐deprivation, glutamine‐deprivation, amino acid withdrawal, sorbitol‐induced hyperosmotic stress) or reactivate a previously deactivated, mTOR‐S6K1 pathway. We have also assessed the mitochondrial function by measurements of mitochondrial transmembrane potential in cells subjected to hypertonic stress. Our results indicate that diverse control signals converge on the mTOR‐S6K1 signaling pathway. In the presence of adequate energy resources, the pathway senses the amino acid availability as inward transport of effective amino acids (as BCAA and especially leucine), but its activation occurs only in the presence of an extracellular amino acid complement, with glutamine as obligatory component, and does not tolerate decrements of cell water volume incapable of maintaining adequate intracellular physicochemical conditions.


Cancer Letters | 2012

Overcoming acquired resistance to letrozole by targeting the PI3K/AKT/mTOR pathway in breast cancer cell clones

Andrea Cavazzoni; Mara A. Bonelli; Claudia Fumarola; Silvia La Monica; Kinda Airoud; Ramona Bertoni; Roberta R. Alfieri; Maricla Galetti; Stefano Tramonti; Elena Galvani; Adrian L. Harris; Lesley-Ann Martin; Daniele Andreis; Alberto Bottini; Daniele Generali; Pier Giorgio Petronini

Development of resistance to endocrine therapy is a clinical issue in estrogen receptor (ER)-positive breast cancer. Here we show that persistent activation of AKT/mTOR signaling is crucial to the acquisition of letrozole resistance in cell clones generated from MCF-7/AROM-1 aromatase-expressing breast cancer cells after prolonged letrozole exposure. ERα plays a marginal role in this context. As a proof of concept, the association between PI3K/AKT/mTOR signaling and insensitivity to endocrine therapies was confirmed in breast cancer patients who developed early letrozole resistance in neoadjuvant setting. In addition our results suggest that, regardless of the mechanism mediating the activation of AKT/mTOR pathway, either RAD001 or NVP-BEZ235 treatment may represent a promising strategy to overcome acquired resistance to letrozole in breast cancers dependent on AKT/mTOR signaling.


Journal of Medicinal Chemistry | 2010

Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion.

Caterina Carmi; Andrea Cavazzoni; Stefano Vezzosi; Fabrizio Bordi; Federica Vacondio; Claudia Silva; Silvia Rivara; Alessio Lodola; Roberta R. Alfieri; Silvia La Monica; Maricla Galetti; Andrea Ardizzoni; Pier Giorgio Petronini; Marco Mor

Irreversible EGFR inhibitors can circumvent acquired resistance to first-generation reversible, ATP-competitive inhibitors in the treatment of non-small-cell lung cancer. They contain both a driver group, which assures target recognition, and a warhead, generally an acrylamide or propargylamide fragment that binds covalently to Cys797 within the kinase domain of EGFR. We performed a systematic exploration of the role for the warhead group, introducing different cysteine-trapping fragments at position 6 of a traditional 4-anilinoquinazoline scaffold. We found that different reactive groups, including epoxyamides (compounds 3-6) and phenoxyacetamides (compounds 7-9), were able to irreversibly inhibit EGFR. In particular, at significant lower concentrations than gefitinib (1), (2R,3R)-N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(piperidin-1-ylmethyl)oxirane-2-carboxamide (6) inhibited EGFR autophosphorylation and downstream signaling pathways, suppressed proliferation, and induced apoptosis in gefitinib-resistant NSCLC H1975 cells, harboring the T790M mutation in EGFR.


Breast Cancer Research and Treatment | 2013

Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.

Claudia Fumarola; Cristina Caffarra; Silvia La Monica; Maricla Galetti; Roberta R. Alfieri; Andrea Cavazzoni; Elena Galvani; Daniele Generali; Pier Giorgio Petronini; Mara A. Bonelli

In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports the need for going on with clinical trials aimed at proving the efficacy of sorafenib for breast cancer treatment.


PLOS ONE | 2013

Gefitinib Inhibits Invasive Phenotype and Epithelial-Mesenchymal Transition in Drug-Resistant NSCLC Cells with MET Amplification

Silvia La Monica; Cristina Caffarra; Francesca Saccani; Elena Galvani; Maricla Galetti; Claudia Fumarola; Mara A. Bonelli; Andrea Cavazzoni; Daniele Cretella; Rita Sirangelo; Rita Gatti; Marcello Tiseo; Andrea Ardizzoni; Elisa Giovannetti; Pier Giorgio Petronini; Roberta R. Alfieri

Despite the initial response, all patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT) with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M) correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.


Molecular Cancer | 2014

Trastuzumab emtansine is active on HER-2 overexpressing NSCLC cell lines and overcomes gefitinib resistance.

Daniele Cretella; Francesca Saccani; Federico Quaini; Caterina Frati; Costanza Lagrasta; Mara A. Bonelli; Cristina Caffarra; Andrea Cavazzoni; Claudia Fumarola; Maricla Galetti; Silvia La Monica; Luca Ampollini; Marcello Tiseo; Andrea Ardizzoni; Pier Giorgio Petronini; Roberta R. Alfieri

BackgroundHER-2 represents a relatively new therapeutic target for non small cell lung cancer (NSCLC) patients. The incidence for reported HER-2 overexpression/amplification/mutations ranges from 2 to 20% in NSCLC. Moreover, HER-2 amplification is a potential mechanism of resistance to tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKI) (about 10% of cases). T-DM1, trastuzumab emtansine is an antibody-drug conjugate composed by the monoclonal antibody trastuzumab and the microtubule polymerization inhibitor DM1. The activity of T-DM1 has been studied in breast cancer but the role of T-DM1 in lung cancer remains unexplored.MethodsAntiproliferative and proapoptotic effects of T-DM1 have been investigated in different NSCLC cell lines by MTT, crystal violet staining, morphological study and Western blotting. HER-2 expression and cell cycle were evaluated by flow cytometry and Western blotting. Antibody dependent cell cytotoxicity (ADCC) was measured with a CytoTox assay. Xenografted mice model has been generated using a NSCLC cell line to evaluate the effect of T-DM1 on tumor growth. Moreover, a morphometric and immunohistochemical analysis of tumor xenografts was conducted.ResultsIn this study we investigated the effect of T-DM1 in a panel of NSCLC cell lines with different HER-2 expression levels, in H1781 cell line carrying HER-2 mutation and in gefitinib resistant HER-2 overexpressing PC9/HER2cl1 cell clone. T-DM1 efficiently inhibited proliferation with arrest in G2-M phase and induced cell death by apoptosis in cells with a significant level of surface expression of HER-2. Antibody-dependent cytotoxicity assay documented that T-DM1 maintained the same activity of trastuzumab. Our data also suggest that targeting HER-2 with T-DM1 potentially overcomes gefitinib resistance. In addition a correlation between cell density/tumor size with both HER-2 expression and T-DM1 activity was established in vitro and in an in vivo xenograft model.ConclusionsOur results indicate that targeting HER-2 with T-DM1 may offer a new therapeutic approach in HER-2 over-expressing lung cancers including those resistant to EGFR TKIs.


Molecular Cancer | 2011

Metabolism of the EGFR tyrosin kinase inhibitor gefitinib by cytochrome P450 1A1 enzyme in EGFR-wild type non small cell lung cancer cell lines

Roberta R. Alfieri; Maricla Galetti; Stefano Tramonti; Roberta Andreoli; Paola Mozzoni; Andrea Cavazzoni; Mara A. Bonelli; Claudia Fumarola; Silvia La Monica; Elena Galvani; Giuseppe De Palma; Antonio Mutti; Marco Mor; Marcello Tiseo; Ettore Mari; Andrea Ardizzoni; Pier Giorgio Petronini

BackgroundGefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR) especially effective in tumors with activating EGFR gene mutations while EGFR wild-type non small cell lung cancer (NSCLC) patients at present do not benefit from this treatment.The primary site of gefitinib metabolism is the liver, nevertheless tumor cell metabolism can significantly affect treatment effectiveness.ResultsIn this study, we investigated the intracellular metabolism of gefitinib in a panel of EGFR wild-type gefitinib-sensitive and -resistant NSCLC cell lines, assessing the role of cytochrome P450 1A1 (CYP1A1) inhibition on gefitinib efficacy. Our results indicate that there is a significant difference in drug metabolism between gefitinib-sensitive and -resistant cell lines. Unexpectedly, only sensitive cells metabolized gefitinib, producing metabolites which were detected both inside and outside the cells. As a consequence of gefitinib metabolism, the intracellular level of gefitinib was markedly reduced after 12-24 h of treatment. Consistent with this observation, RT-PCR analysis and EROD assay showed that mRNA and activity of CYP1A1 were present at significant levels and were induced by gefitinib only in sensitive cells. Gefitinib metabolism was elevated in crowded cells, stimulated by exposure to cigarette smoke extract and prevented by hypoxic condition. It is worth noting that the metabolism of gefitinib in the sensitive cells is a consequence and not the cause of drug responsiveness, indeed treatment with a CYP1A1 inhibitor increased the efficacy of the drug because it prevented the fall in intracellular gefitinib level and significantly enhanced the inhibition of EGFR autophosphorylation, MAPK and PI3K/AKT/mTOR signalling pathways and cell proliferation.ConclusionOur findings suggest that gefitinib metabolism in lung cancer cells, elicited by CYP1A1 activity, might represent an early assessment of gefitinib responsiveness in NSCLC cells lacking activating mutations. On the other hand, in metabolizing cells, the inhibition of CYP1A1 might lead to increased local exposure to the active drug and thus increase gefitinib potency.


Biochemical Pharmacology | 2010

Functional characterization of gefitinib uptake in non-small cell lung cancer cell lines

Maricla Galetti; Roberta R. Alfieri; Andrea Cavazzoni; Silvia La Monica; Mara A. Bonelli; Claudia Fumarola; Paola Mozzoni; Giuseppe De Palma; Roberta Andreoli; Antonio Mutti; Marco Mor; Marcello Tiseo; Andrea Ardizzoni; Pier Giorgio Petronini

Gefitinib, an inhibitor of epidermal growth factor receptor tyrosine kinase, has been developed and approved for treatment of advanced non-small cell lung cancer (NSCLC). In this study, we investigated the uptake of gefitinib in gefitinib-sensitive and -resistant NSCLC cell lines. The transport system was temperature-dependent, indicative of an active process and sodium- and potential-independent. Moreover, high cell densities and low extracellular pH significantly reduced the uptake of gefitinib. Inhibitors of the human organic cation transporter 1 (hOCT1) significantly decreased gefitinib uptake; however, gefitinib was not a substrate for hOCT1 or hOCT2 in overexpressing HEK293 cells. Interestingly, gefitinib significantly reduced uptake of the hOCT prototypical substrate MPP suggesting that gefitinib may exert an inhibitory effect on the intracellular accumulation of drugs transported by hOCT1 and hOCT2. After 15min of treatment at 1microM (the maximum plasma concentration of gefitinib obtained at the clinically relevant dose) gefitinib accumulated within the cell in resistant-cell lines at concentrations similar or even higher than in gefitinib-sensitive cells tending to rule out an alteration in drug uptake as a mechanism of resistance to gefitinib treatment. Moreover, our results suggest that the extrusion of lactate by crowded cells may contribute in decreasing the pH, which in turn can influence the uptake of gefinitib and as a result the inhibition of EGFR autophosphorylation.


Biochemical Pharmacology | 2009

Zoledronic acid determines S-phase arrest but fails to induce apoptosis in cholangiocarcinoma cells.

Antonello A. Romani; Silvia Desenzani; Marina Morganti; Silvia La Monica; Angelo F. Borghetti; P. Soliani

Cholangiocarcinoma is the second most common primary hepatic neoplasia and the only curative therapy is surgical resection or liver transplantation. Biphosphonates (BPs) are an emerging class of drugs widely used to treat bone diseases and also appear to possess direct antitumor activity. In two human cholangiocarcinoma cell lines (TFK-1 and EGI-1) we investigated, for the first time, the activity of zoledronic acid by determining proliferation, cell cycle analysis and apoptosis. The results obtained indicate that zoledronic acid induces cell-narrowing and growth inhibition, both reversed by 25 microM GGOH, and significantly affects the colony-forming ability of these cells. The inhibition by zoledronic acid of Rap1A prenylation was reversed in cell co-treated with GGOH. At 10-50 microM zoledronic acid exerted an S-phase cell cycle arrest which was confirmed by changes in the level of cyclins and of regulators p27(KIP1) and pRb. Interestingly, the expression level of cyclin A (putative S-phase marker) shows a dose-dependent increment in contrast to the decrement of cyclin D1 (putative G1 phase marker). However, neither hypodiploid cells nor cleaved PARP or caspase-3 was detected. The lack of TP53 or loss of its function, the large constitutive expressions of anti-apoptotic proteins Bcl-xL and HSP27 together with the low level of the pro-apoptotic Bax are the likely factors which protect cells from apoptosis. In conclusion, our study indicates that zoledronic acid induces S-phase arrest and cell-narrowing, both reversed by GGOH and, by changing the delicate balance between pro- and anti-apoptotic proteins, allows survival of cholangiocarcinoma cells.

Collaboration


Dive into the Silvia La Monica's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge