Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta R. Alfieri is active.

Publication


Featured researches published by Roberta R. Alfieri.


Biochemical Pharmacology | 2014

Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer.

Claudia Fumarola; Mara A. Bonelli; Pier Giorgio Petronini; Roberta R. Alfieri

While PI3K/AKT/mTOR pathway is altered in a variety of cancers including non small cell lung cancer, abnormalities in this pathway are more common in squamous cell lung carcinoma than in adenocarcinoma of the lung. Moreover, aberrant activation of PI3K/AKT/mTOR pathway is one of the mechanisms of acquired resistance to EGFR-TK inhibitors in patients with adenocarcinoma carrying EGFR activating mutations. Several inhibitors of the PI3K pathway are undergoing evaluation in preclinical and clinical studies. These include pan and selective inhibitors of PI3K, AKT inhibitors, rapamycin and rapalogs for mTOR inhibition, dual mTORC1-mTORC2 inhibitors and dual PI3K-mTOR inhibitors. This review focuses on recent preclinical and clinical data on the efficacy of PI3K pathway inhibitors in NSCLC either as monotherapy approach or in combination with chemotherapy or with drugs that target other signaling transduction pathways.


The FASEB Journal | 2002

Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells

Maurizio Brigotti; Roberta R. Alfieri; Piero Sestili; Mara A. Bonelli; Pier Giorgio Petronini; Andrea Guidarelli; Luigi Barbieri; Fiorenzo Stirpe; Simonetta Sperti

Ribosome‐inactivating proteins (RIPs) remove a specific adenine from 28S rRNA leading to inactivation of ribosomes and arrest of translation. Great interest as to a possible second physiological substrate for RIPs came from the observation that in vitro RIPs remove adenine from DNA. This paper addresses the problem of nuclear lesions induced by RIPs in human endothelial cells susceptible to the bacterial RIP Shiga toxin 1 and the plant RIP ricin. With both toxins, nuclear DNA damage as evaluated by two independent techniques (alkaline‐halo assay and alkaline filter elution) appears early, concomitant with (ricin) or after (Shiga toxin 1) the inhibition of protein synthesis. At this time, the annexin V binding assay, caspase 3 activity, the formation of typical ≤ 50 Kb DNA fragments, and changes in morphology associated with apoptosis were negative. Furthermore, a block of translation comparable to that induced by RIPs, but obtained with cycloheximide, did not induce nuclear damage. Such damage is consistent with the enzymatic activity (removal of adenine) of RIPs acting in vitro on RNA‐free chromatin and DNA. The results unequivocally indicate that RIPs can damage nuclear DNA in whole cells by means that are not secondary to ribosome inactivation or apoptosis.—Brigotti, M., Alfieri, R., Sestili, P., Bonelli, M., Petronini, P. G., Guidarelli, A., Barbieri, L., Stirpe, F., Sperti, S. Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J. 16, 365–372 (2002)


The Journal of Physiology | 2002

Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis

Roberta R. Alfieri; Andrea Cavazzoni; Pier Giorgio Petronini; Mara A. Bonelli; Alessandro E. Caccamo; Angelo F. Borghetti; Kenneth P. Wheeler

Porcine pulmonary arterial endothelial cells accumulated myo‐inositol and taurine, as well as betaine, during adaptation to hypertonic stress. The cells grew and maintained their normal morphology during culture in hypertonic (0.5 osmol (kg H2O)−1) medium that contained osmolytes such as betaine, myo‐inositol or taurine at concentrations close to reported physiological values. The cells did not grow well in hypertonic medium depleted of potential compatible osmolytes. After a few days, cell density decreased by about 50 % and many cells rounded up and detached from the plates, their nuclei showing clear apoptotic morphology. The caspase‐3 activity of the cells also increased dramatically under these conditions, but remained negligibly low when betaine and myo‐inositol were added to the medium. Addition of betaine and myo‐inositol to hypertonic medium depleted of compatible osmolytes increased the number of colonies remaining after 12 days of culture; with each solute at 30–100 μmol l−1 the number increased about sixfold. In the absence of compatible osmolytes, increased mRNA levels and corresponding activities of betaine/γ‐aminobutyric acid transporter (BGT1) and sodium/myo‐inositol transporter (SMIT) induced by hypertonicity remained high after 72 h incubation, whereas they were down regulated in the presence of betaine and myo‐inositol. Similarly, the down regulation of the amino acid System A transporter (ATA2) was markedly slowed in the absence of compatible osmolytes. We conclude that these compatible osmolytes at concentrations close to physiological values enable the endothelial cells to adapt to hypertonic stress, protecting them from apoptosis, and also modulate the adaptation process.


Pflügers Archiv: European Journal of Physiology | 2007

Hyperosmotic stress response: comparison with other cellular stresses.

Roberta R. Alfieri; Pier Giorgio Petronini

Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.


Biochemical Pharmacology | 2012

Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer

Caterina Carmi; Marco Mor; Pier Giorgio Petronini; Roberta R. Alfieri

Irreversible inhibitors provide potent and selective inhibition of tyrosine kinase enzymes. Use of such inhibitors has proved promising in overcoming the tumor resistance encountered with reversible tyrosine kinase inhibitors. Irreversible inhibitors inactivate their protein target through covalent interaction with a nucleophilic cysteine residue within the nucleotide binding pocket of the kinase domain. Different irreversible tyrosin kinase inhibitors directed against epidermal growth factor receptor (EGFR), Brutons tyrosine kinase (BTK), vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor tyrosine kinase (FGFR) have been developed and some of them have been employed clinically as anticancer agents. This review focuses on recent preclinical and clinical progress with currently available irreversible tyrosine kinase inhibitors. The chemical structures of the candidates, structure-activity relationships, biological activities and results of current clinical investigations are described.


Biochemical Pharmacology | 2009

Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines

Silvia La Monica; Maricla Galetti; Roberta R. Alfieri; Andrea Cavazzoni; Andrea Ardizzoni; Marcello Tiseo; Marzia Capelletti; Matteo Goldoni; Sara Tagliaferri; Antonio Mutti; Claudia Fumarola; Mara A. Bonelli; Daniele Generali; Pier Giorgio Petronini

The epidermal growth factor receptor (EGFR) is a validated target for therapy in non-small cell lung cancer (NSCLC). Most patients, however, either do not benefit or develop resistance to specific inhibitors of the EGFR tyrosine kinase activity, such as gefitinib or erlotinib. The mammalian target of rapamycin (mTOR) is a key intracellular kinase integrating proliferation and survival pathways and has been associated with resistance to EGFR tyrosine kinase inhibitors. In this study, we assessed the effects of combining the mTOR inhibitor everolimus (RAD001) with gefitinib on a panel of NSCLC cell lines characterized by gefitinib resistance and able to maintain S6K phosphorylation after gefitinib treatment. Everolimus plus gefitinib induced a significant decrease in the activation of MAPK and mTOR signaling pathways downstream of EGFR and resulted in a growth-inhibitory effect rather than in an enhancement of cell death. A synergistic effect was observed in those cell lines characterized by high proliferative index and low doubling time. These data suggest that treatment with everolimus and gefitinib might be of value in the treatment of selected NSCLC patients that exhibit high tumor proliferative activity.


Biochemical Journal | 2003

Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis.

Maurizio Brigotti; Pier Giorgio Petronini; Domenica Carnicelli; Roberta R. Alfieri; Mara A. Bonelli; Angelo F. Borghetti; Kenneth P. Wheeler

To mimic what might happen in cells exposed to hypertonicity, the effects of increased osmolarity and ionic strength on cell-free protein synthesis have been examined. Translation of globin mRNA by rabbit reticulocyte lysate decreased by 30-60% when osmolality was increased from 0.35 to 0.53 osmol/kg of water by the addition of NaCl, KCl, CH(3)CO(2)Na or CH(3)CO(2)K. In contrast, equivalent additions of the compatible osmolytes betaine or myo -inositol caused a 40-50% increase in the rate of translation, whereas amino acids (50-135 mM) that are transported via system A had no significant effect. Addition of 75 mM KCl caused a dramatic fall in the amount of the 43 S pre-initiation complex, whereas it was totally preserved when osmolarity was similarly increased by the addition of 150 mM betaine. The formation of a non-enzymic initiation complex between rabbit [(3)H]Phe-tRNA, poly(U) and the 80 S ribosomes was unaffected by the addition of 75 mM NaCl or KCl, but translation of the complex decreased by 70%. Density-gradient centrifugation of reticulocyte extracts translating endogenous mRNA revealed that addition of 150 mM betaine had no effect, whereas addition of 75 mM KCl caused a marked decrease in the polysome peak, concomitant with an increase in the proportion of 80 S ribosomes and ribosomal subunits, even when elongation was inhibited with fragment A of diphtheria toxin. These results are consistent with the notion that both initiation and elongation are inhibited by unusually high concentrations of inorganic ions, but not by the compatible osmolytes betaine or myo -inositol.


Cell Death & Differentiation | 2005

Cell size reduction induced by inhibition of the mTOR/S6K-signaling pathway protects Jurkat cells from apoptosis

Claudia Fumarola; S La Monica; Roberta R. Alfieri; E Borra; Guido G. Guidotti

In Jurkat cells, the decreased cell growth rate associated with a long-lasting deactivation of the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (S6K)-signaling pathway generates a cell population of progressively reduced cellular mass and size. When promoted by rapamycin as prototype inhibitor, the mTOR deactivation-dependent cell size reduction was associated with slowed, but not suppressed, proliferation. Small-size cells were significantly protected from apoptosis induced by Fas/Apo-1 death-receptor activation (as shown by reduced procaspase cleavage and decreased catalytic activity of relevant caspases) or by stress signals-dependent mitochondrial perturbation (as shown by reduced cleavage of caspase-2, lower dissipation of mitochondrial membrane potential and decreased release of cytochorome c and apoptosis-inducing factor from mitochondria). Protection faded when reactivation of the mTOR/S6K pathway promoted the cell recovery to normal size. These results suggest that cells induced to reduce their mass by the mTOR deactivation-dependent inhibition of cell growth become more resilient to lethal assaults by curbing the cells suicidal response.


Cancer Letters | 2012

Overcoming acquired resistance to letrozole by targeting the PI3K/AKT/mTOR pathway in breast cancer cell clones

Andrea Cavazzoni; Mara A. Bonelli; Claudia Fumarola; Silvia La Monica; Kinda Airoud; Ramona Bertoni; Roberta R. Alfieri; Maricla Galetti; Stefano Tramonti; Elena Galvani; Adrian L. Harris; Lesley-Ann Martin; Daniele Andreis; Alberto Bottini; Daniele Generali; Pier Giorgio Petronini

Development of resistance to endocrine therapy is a clinical issue in estrogen receptor (ER)-positive breast cancer. Here we show that persistent activation of AKT/mTOR signaling is crucial to the acquisition of letrozole resistance in cell clones generated from MCF-7/AROM-1 aromatase-expressing breast cancer cells after prolonged letrozole exposure. ERα plays a marginal role in this context. As a proof of concept, the association between PI3K/AKT/mTOR signaling and insensitivity to endocrine therapies was confirmed in breast cancer patients who developed early letrozole resistance in neoadjuvant setting. In addition our results suggest that, regardless of the mechanism mediating the activation of AKT/mTOR pathway, either RAD001 or NVP-BEZ235 treatment may represent a promising strategy to overcome acquired resistance to letrozole in breast cancers dependent on AKT/mTOR signaling.


Journal of Cellular Physiology | 1996

Cell susceptibility to apoptosis by glutamine deprivation and rescue: survival and apoptotic death in cultured lymphoma-leukemia cell lines.

Pier Giorgio Petronini; Urbani S; Roberta R. Alfieri; Angelo F. Borghetti; Guido G. Guidotti

Human leukemia/lymphoma cells maintained in culture medium without provision of fresh nutrients lose viability and die by a process resembling apoptosis within a few days. Upon incubation in an FCS‐supplemented RPMI 1640 medium containing 2 mM L‐glutamine CEM, Namalwa, HL‐60 and U937 cells, seeded at initial densities of 0.2 to 1 × 106 cells/ml, ceased growing within 3–5 days and progressively entered an apoptotic pathway, as assessed by nucleosomal DNA fragmentation and morphology. Both the major energy‐source nutrients in the medium, glucose and glutamine, became rapidly exhausted during the incubation. Further studies were performed using CEM cells. Incubation in glutamine‐free or glucose‐free medium renewed every 24 h showed that glutamine deprivation is associated with cell death by apoptosis independent of energetic failure, whereas glucose deprivation is followed by rapid loss of mitochondrial function with sharp drop of intracellular ATP and cell death by necrosis. A 12–24 h incubation in glutamine‐depleted medium was required to direct the cells toward the apoptotic pathway. Growth arrest followed by apoptotic death was detected in CEM cells when medium glutamine concentration remained below 0.3–0.4 mM for at least 24 h, but a reinstatement of medium glutamine to 2 mM within this period rescued the cells from growth arrest and death.

Collaboration


Dive into the Roberta R. Alfieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge