Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew B. Stergachis is active.

Publication


Featured researches published by Andrew B. Stergachis.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nature | 2012

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph; Jeff Vierstra; Andrew B. Stergachis; Alex Reynolds; Eric Haugen; Benjamin Vernot; Robert E. Thurman; Sam John; Richard Sandstrom; Audra K. Johnson; Matthew T. Maurano; Richard Humbert; Eric Rynes; Hao Wang; Shinny Vong; Kristen Lee; Daniel Bates; Morgan Diegel; Vaughn Roach; Douglas Dunn; Jun Neri; Anthony Schafer; R. Scott Hansen; Tanya Kutyavin; Erika Giste; Molly Weaver; Theresa K. Canfield; Peter J. Sabo; Miaohua Zhang; Gayathri Balasundaram

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Cell | 2012

Circuitry and dynamics of human transcription factor regulatory networks

Shane Neph; Andrew B. Stergachis; Alex Reynolds; Richard Sandstrom; Elhanan Borenstein; John A. Stamatoyannopoulos

The combinatorial cross-regulation of hundreds of sequence-specific transcription factors (TFs) defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific TFs and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human TF networks are highly cell selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell-type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide an extensive description of the circuitry, dynamics, and organizing principles of the human TF regulatory network.


Cell | 2013

Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes

Andrew B. Stergachis; Shane Neph; Alex Reynolds; Richard Humbert; Brady Miller; Sharon L. Paige; Benjamin Vernot; Jeffrey B. Cheng; Robert E. Thurman; Richard Sandstrom; Eric Haugen; Shelly Heimfeld; Charles E. Murry; Joshua M. Akey; John A. Stamatoyannopoulos

Cellular-state information between generations of developing cells may be propagated via regulatory regions. We report consistent patterns of gain and loss of DNase I-hypersensitive sites (DHSs) as cells progress from embryonic stem cells (ESCs) to terminal fates. DHS patterns alone convey rich information about cell fate and lineage relationships distinct from information conveyed by gene expression. Developing cells share a proportion of their DHS landscapes with ESCs; that proportion decreases continuously in each cell type as differentiation progresses, providing a quantitative benchmark of developmental maturity. Developmentally stable DHSs densely encode binding sites for transcription factors involved in autoregulatory feedback circuits. In contrast to normal cells, cancer cells extensively reactivate silenced ESC DHSs and those from developmental programs external to the cell lineage from which the malignancy derives. Our results point to changes in regulatory DNA landscapes as quantitative indicators of cell-fate transitions, lineage relationships, and dysfunction.


Science | 2013

Exonic Transcription Factor Binding Directs Codon Choice and Affects Protein Evolution

Andrew B. Stergachis; Eric Haugen; Anthony Shafer; Wenqing Fu; Benjamin Vernot; Alex Reynolds; Anthony Raubitschek; Steven F. Ziegler; Emily LeProust; Joshua M. Akey; John A. Stamatoyannopoulos

Transcription Factor Binding Sites Transcription factors (TFs) are proteins that bind to DNA to control gene transcription. Stergachis et al. (p. 1367; see the Perspective by Weatheritt and Babu) examined TF binding within the human genome in more than 80 cell types. Nearly 15% of coding regions simultaneously specify both amino acid sequence and TF recognition sites. The distribution of the TF binding sites evolutionarily constrains how codons within these regions can change, independent of encoded protein function. Thus, TF binding may represent a widespread and strong evolutionary force in coding regions. Transcription factor binding within protein-coding regions of DNA constrains how the protein can evolve. [Also see Perspective by Weatheritt and Babu] Genomes contain both a genetic code specifying amino acids and a regulatory code specifying transcription factor (TF) recognition sequences. We used genomic deoxyribonuclease I footprinting to map nucleotide resolution TF occupancy across the human exome in 81 diverse cell types. We found that ~15% of human codons are dual-use codons (“duons”) that simultaneously specify both amino acids and TF recognition sites. Duons are highly conserved and have shaped protein evolution, and TF-imposed constraint appears to be a major driver of codon usage bias. Conversely, the regulatory code has been selectively depleted of TFs that recognize stop codons. More than 17% of single-nucleotide variants within duons directly alter TF binding. Pervasive dual encoding of amino acid and regulatory information appears to be a fundamental feature of genome evolution.


Nature | 2014

Conservation of trans-acting circuitry during mammalian regulatory evolution

Andrew B. Stergachis; Shane Neph; Richard Sandstrom; Eric Haugen; Alex Reynolds; Miaohua Zhang; Rachel Byron; Theresa K. Canfield; Sandra Stelhing-Sun; Kristen Lee; Robert E. Thurman; Shinny Vong; Daniel Bates; Fidencio Neri; Morgan Diegel; Erika Giste; Douglas Dunn; Jeff Vierstra; R. Scott Hansen; Audra K. Johnson; Peter J. Sabo; Matthew S. Wilken; Thomas A. Reh; Piper M. Treuting; Rajinder Kaul; Mark Groudine; Michael Bender; Elhanan Borenstein; John A. Stamatoyannopoulos

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Cell Reports | 2014

Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana.

Alessandra M Sullivan; Andrej A Arsovski; Janne Lempe; Kerry L. Bubb; Matthew T. Weirauch; Peter J. Sabo; Richard Sandstrom; Robert E. Thurman; Shane Neph; Alex Reynolds; Andrew B. Stergachis; Benjamin Vernot; Audra K. Johnson; Eric Haugen; Shawn T. Sullivan; Agnieszka Thompson; Fidencio V. Neri; Molly Weaver; Morgan Diegel; Sanie Mnaimneh; Ally Yang; Timothy R. Hughes; Jennifer L. Nemhauser; Christine Queitsch; John A. Stamatoyannopoulos

Our understanding of gene regulation in plants is constrained by our limited knowledge of plant cis-regulatory DNA and its dynamics. We mapped DNase I hypersensitive sites (DHSs) in A. thaliana seedlings and used genomic footprinting to delineate ∼ 700,000 sites of in vivo transcription factor (TF) occupancy at nucleotide resolution. We show that variation associated with 72 diverse quantitative phenotypes localizes within DHSs. TF footprints encode an extensive cis-regulatory lexicon subject to recent evolutionary pressures, and widespread TF binding within exons may have shaped codon usage patterns. The architecture of A. thaliana TF regulatory networks is strikingly similar to that of animals in spite of diverged regulatory repertoires. We analyzed regulatory landscape dynamics during heat shock and photomorphogenesis, disclosing thousands of environmentally sensitive elements and enabling mapping of key TF regulatory circuits underlying these fundamental responses. Our results provide an extensive resource for the study of A. thaliana gene regulation and functional biology.


Nature Methods | 2011

Rapid empirical discovery of optimal peptides for targeted proteomics

Andrew B. Stergachis; Brendan MacLean; Kristen Lee; John A. Stamatoyannopoulos; Michael J. MacCoss

We report a method for high-throughput, cost-efficient empirical discovery of optimal proteotypic peptides and fragment ions for targeted proteomics applications using in vitro–synthesized proteins. We demonstrate the approach using human transcription factors, which are typically difficult, low-abundance targets and empirically derived proteotypic peptides for 98% of the target proteins. We show that targeted proteomic assays developed using our approach facilitate robust in vivo quantification of human transcription factors.


Genome Research | 2012

Personal and population genomics of human regulatory variation

Benjamin Vernot; Andrew B. Stergachis; Matthew T. Maurano; Jeff Vierstra; Shane Neph; Robert E. Thurman; John A. Stamatoyannopoulos; Joshua M. Akey

The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geographically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is significant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipocytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.


Journal of Proteome Research | 2014

Panorama: A Targeted Proteomics Knowledge Base

Vagisha Sharma; Josh Eckels; Greg Taylor; Nicholas J. Shulman; Andrew B. Stergachis; Shannon A. Joyner; Ping Yan; Jeffrey R. Whiteaker; Goran N. Halusa; Birgit Schilling; Bradford W. Gibson; Christopher M. Colangelo; Amanda G. Paulovich; Steven A. Carr; Jacob D. Jaffe; Michael J. MacCoss; Brendan MacLean

Panorama is a web application for storing, sharing, analyzing, and reusing targeted assays created and refined with Skyline,1 an increasingly popular Windows client software tool for targeted proteomics experiments. Panorama allows laboratories to store and organize curated results contained in Skyline documents with fine-grained permissions, which facilitates distributed collaboration and secure sharing of published and unpublished data via a web-browser interface. It is fully integrated with the Skyline workflow and supports publishing a document directly to a Panorama server from the Skyline user interface. Panorama captures the complete Skyline document information content in a relational database schema. Curated results published to Panorama can be aggregated and exported as chromatogram libraries. These libraries can be used in Skyline to pick optimal targets in new experiments and to validate peak identification of target peptides. Panorama is open-source and freely available. It is distributed as part of LabKey Server,2 an open source biomedical research data management system. Laboratories and organizations can set up Panorama locally by downloading and installing the software on their own servers. They can also request freely hosted projects on https://panoramaweb.org, a Panorama server maintained by the Department of Genome Sciences at the University of Washington.

Collaboration


Dive into the Andrew B. Stergachis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shane Neph

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Reynolds

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Vierstra

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kristen Lee

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge