Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliann Shih is active.

Publication


Featured researches published by Juliann Shih.


Cancer Cell | 2016

Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

Siyuan Zheng; Andrew D. Cherniack; Ninad Dewal; Richard A. Moffitt; Ludmila Danilova; Bradley A. Murray; Antonio M. Lerario; Tobias Else; Theo Knijnenburg; Giovanni Ciriello; Seungchan Kim; Guillaume Assié; Olena Morozova; Rehan Akbani; Juliann Shih; Katherine A. Hoadley; Toni K. Choueiri; Jens Waldmann; Ozgur Mete; Robertson Ag; Hsin-Ta Wu; Benjamin J. Raphael; Shao L; Matthew Meyerson; Michael J. Demeure; Felix Beuschlein; Anthony J. Gill; Stan B. Sidhu; Madson Q. Almeida; Maria Candida Barisson Villares Fragoso

We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.


Nature Genetics | 2017

Patient-derived xenografts undergo mouse-specific tumor evolution

Uri Ben-David; Gavin Ha; Yuen-Yi Tseng; Noah F. Greenwald; Coyin Oh; Juliann Shih; James M McFarland; Bang Wong; Jesse S. Boehm; Rameen Beroukhim; Todd R. Golub

Patient-derived xenografts (PDXs) have become a prominent cancer model system, as they are presumed to faithfully represent the genomic features of primary tumors. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We observed rapid accumulation of CNAs during PDX passaging, often due to selection of preexisting minor clones. CNA acquisition in PDXs was correlated with the tissue-specific levels of aneuploidy and genetic heterogeneity observed in primary tumors. However, the particular CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients. Several CNAs recurrently observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Notably, the genomic stability of PDXs was associated with their response to chemotherapy and targeted drugs. These findings have major implications for PDX-based modeling of human cancer.


Cell Reports | 2017

Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

Farshad Farshidfar; Siyuan Zheng; Marie-Claude Gingras; Yulia Newton; Juliann Shih; A. Gordon Robertson; Toshinori Hinoue; Katherine A. Hoadley; Ewan A. Gibb; Jason Roszik; Kyle Covington; Chia Chin Wu; Eve Shinbrot; Nicolas Stransky; Apurva M. Hegde; Ju Dong Yang; Ed Reznik; Sara Sadeghi; Chandra Sekhar Pedamallu; Akinyemi I. Ojesina; Julian Hess; J. Todd Auman; Suhn Kyong Rhie; Reanne Bowlby; Mitesh J. Borad; Andrew X. Zhu; Josh Stuart; Chris Sander; Rehan Akbani; Andrew D. Cherniack

Summary Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.


Nature Communications | 2017

The genomic landscape of tuberous sclerosis complex

Katie R. Martin; Wanding Zhou; Megan J. Bowman; Juliann Shih; Kit Sing Au; Kristin E. Dittenhafer-Reed; Kellie A. Sisson; Julie Koeman; Daniel J. Weisenberger; Sandra Cottingham; Steven T. DeRoos; Orrin Devinsky; Mary E. Winn; Andrew D. Cherniack; Hui Shen; Hope Northrup; Darcy A. Krueger; Jeffrey P. MacKeigan

Tuberous sclerosis complex (TSC) is a rare genetic disease causing multisystem growth of benign tumours and other hamartomatous lesions, which leads to diverse and debilitating clinical symptoms. Patients are born with TSC1 or TSC2 mutations, and somatic inactivation of wild-type alleles drives MTOR activation; however, second hits to TSC1/TSC2 are not always observed. Here, we present the genomic landscape of TSC hamartomas. We determine that TSC lesions contain a low somatic mutational burden relative to carcinomas, a subset feature large-scale chromosomal aberrations, and highly conserved molecular signatures for each type exist. Analysis of the molecular signatures coupled with computational approaches reveals unique aspects of cellular heterogeneity and cell origin. Using immune data sets, we identify significant neuroinflammation in TSC-associated brain tumours. Taken together, this molecular catalogue of TSC serves as a resource into the origin of these hamartomas and provides a framework that unifies genomic and transcriptomic dimensions for complex tumours.


Cancer Discovery | 2018

Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor

Xiaoyang Zhang; Peter S. Choi; Joshua M. Francis; Galen F. Gao; Joshua D. Campbell; Yoichiro Mitsuishi; Gavin Ha; Juliann Shih; Francisca Vazquez; Aviad Tsherniak; Alison M. Taylor; Jin Zhou; Zhong Wu; Ashton C. Berger; Marios Giannakis; William C. Hahn; Andrew D. Cherniack; Matthew Meyerson

The Krüppel-like family of transcription factors plays critical roles in human development and is associated with cancer pathogenesis. Krüppel-like factor 5 gene (KLF5) has been shown to promote cancer cell proliferation and tumorigenesis and to be genomically amplified in cancer cells. We recently reported that the KLF5 gene is also subject to other types of somatic coding and noncoding genomic alterations in diverse cancer types. Here, we show that these alterations activate KLF5 by three distinct mechanisms: (i) Focal amplification of superenhancers activates KLF5 expression in squamous cell carcinomas; (ii) Missense mutations disrupt KLF5-FBXW7 interactions to increase KLF5 protein stability in colorectal cancer; (iii) Cancer type-specific hotspot mutations within a zinc-finger DNA binding domain of KLF5 change its DNA binding specificity and reshape cellular transcription. Utilizing data from CRISPR/Cas9 gene knockout screening, we reveal that cancer cells with KLF5 overexpression are dependent on KLF5 for their proliferation, suggesting KLF5 as a putative therapeutic target.Significance: Our observations, together with previous studies that identified oncogenic properties of KLF5, establish the importance of KLF5 activation in human cancers, delineate the varied genomic mechanisms underlying this occurrence, and nominate KLF5 as a putative target for therapeutic intervention in cancer. Cancer Discov; 8(1); 108-25. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.


Gastroenterology | 2017

Sporadic Early-Onset Diffuse Gastric Cancers Have High Frequency of Somatic CDH1 Alterations, but Low Frequency of Somatic RHOA Mutations Compared With Late-Onset Cancers

Soo Young Cho; J. Park; Yang Liu; Young Soo Park; J. Kim; Hanna Yang; Hyejin Um; Woo Ri Ko; Byung Il Lee; Sun Young Kwon; Seung Wan Ryu; Chae Hwa Kwon; Do Youn Park; Jae-Hyuk Lee; Sang-Il Lee; Kyu Sang Song; Hoon Hur; Sang-Uk Han; Hee-Kyung Chang; Su-Jin Kim; Byung-Sik Kim; Jeong-Hwan Yook; Moon-Won Yoo; Beom Su Kim; In-Seob Lee; Myeong-Cherl Kook; Nina Thiessen; An He; Chip Stewart; Andrew Dunford

BACKGROUND & AIMS: Early-onset gastric cancer, which develops in patients younger than most gastric cancers, is usually detected at advanced stages, has diffuse histologic features, and occurs more frequently in women. We investigated somatic genomic alterations associated with the unique characteristics of sporadic diffuse gastric cancers (DGCs) from younger patients. METHODS: We conducted whole exome and RNA sequence analyses of 80 resected DGC samples from patients 45 years old or younger in Korea. Patients with pathogenic germline mutations in CDH1, TP53, and ATM were excluded from the onset of this analysis, given our focus on somatic alterations. We used MutSig2CV to evaluate the significance of mutated genes. We recruited 29 additional early-onset Korean DGC samples and performed SNP6.0 array and targeted sequencing analyses of these 109 early-onset DGC samples (54.1% female, median age, 38 years). We compared the SNP6.0 array and targeted sequencing data of the 109 early-onset DGC samples with those from diffuse-type stomach tumor samples collected from 115 patients in Korea who were 46 years or older (late onset) at the time of diagnosis (controls; 29.6% female, median age, 67 years). We compared patient survival times among tumors from different subgroups and with different somatic mutations. We performed gene silencing of RHOA or CDH1 in DGC cells with small interfering RNAs for cell-based assays. RESULTS: We identified somatic mutations in the following genes in a significant number of early-onset DGCs: the cadherin 1 gene (CDH1), TP53, ARID1A, KRAS, PIK3CA, ERBB3, TGFBR1, FBXW7, RHOA, and MAP2K1. None of 109 early-onset DGC cases had pathogenic germline CDH1 mutations. A higher proportion of early-onset DGCs had mutations in CDH1 (42.2%) or TGFBR1 (7.3%) compared with control DGCs (17.4% and 0.9%, respectively) (P < .001 and P = .014 for CDH1 and TGFBR1, respectively). In contrast, a smaller proportion of early-onset DGCs contained mutations in RHOA (9.2%) than control DGCs (19.1%) (P = .033). Late-onset DGCs in The Cancer Genome Atlas also contained less frequent mutations in CDH1 and TGFBR1 and more frequent RHOA mutations, compared with early-onset DGCs. Early-onset DGCs from women contained significantly more mutations in CDH1 or TGFBR1 than early-onset DGCs from men. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times in patients with early-onset DGCs (hazard ratio, 3.4; 95% confidence interval, 1.5–7.7). RHOA activity was reduced by an R5W substitution—the RHOA mutation most frequently detected in early-onset DGCs. Silencing of CDH1, but not RHOA, increased migratory activity of DGC cells. CONCLUSIONS: In an integrative genomic analysis, we found higher proportions of early-onset DGCs to contain somatic mutations in CDH1 or TGFBR1 compared with late-onset DGCs. However, a smaller proportion of early-onset DGCs contained somatic mutations in RHOA than late-onset DGCs. CDH1 alterations, but not RHOA mutations, were associated with shorter survival times of patients, which might account for the aggressive clinical course of early-onset gastric cancer. Female predominance in early-onset gastric cancer may be related to relatively high rates of somatic CDH1 and TGFBR1 mutations in this population.


Cancer Research | 2017

Genomic Activation of PPARG Reveals a Candidate Therapeutic Axis in Bladder Cancer

Jonathan T. Goldstein; Ashton C. Berger; Juliann Shih; Fujiko Duke; Laura Furst; David J. Kwiatkowski; Andrew D. Cherniack; Matthew Meyerson; Craig A. Strathdee

The PPARG gene encoding the nuclear receptor PPARγ is activated in bladder cancer, either directly by gene amplification or mutation, or indirectly by mutation of the RXRA gene, which encodes the heterodimeric partner of PPARγ. Here, we show that activating alterations of PPARG or RXRA lead to a specific gene expression signature in bladder cancers. Reducing PPARG activity, whether by pharmacologic inhibition or genetic ablation, inhibited proliferation of PPARG-activated bladder cancer cells. Our results offer a preclinical proof of concept for PPARG as a candidate therapeutic target in bladder cancer. Cancer Res; 77(24); 6987-98. ©2017 AACR.


Nature Genetics | 2018

Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer

Srinivas R. Viswanathan; Marina F. Nogueira; Colin G. Buss; John M. Krill-Burger; Mathias J. Wawer; Edyta Malolepsza; Ashton C. Berger; Peter S. Choi; Juliann Shih; Alison M. Taylor; Benjamin Tanenbaum; Chandra Sekhar Pedamallu; Andrew D. Cherniack; Pablo Tamayo; Craig A. Strathdee; Kasper Lage; Steven A. Carr; Monica Schenone; Sangeeta N. Bhatia; Francisca Vazquez; Aviad Tsherniak; William C. Hahn; Matthew Meyerson

Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1–5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6–8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion.Analysis of paralog gene pairs using data from loss-of-function genetic screens in cancer cells identifies MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types.


Cancer Research | 2017

Abstract 3627: Validation of PPARG and RXRA as drivers of bladder cancer

Jonathan T. Goldstein; Craig A. Strathdee; Fujiko Duke; Juliann Shih; Matthew Meyerson

A subset of muscle-invasive bladder cancer (BLCA) is typified by PPARG pathway activation. PPARG focal gene amplification occurs in 15% of bladder cancer patients, and similarly, 5% of BLCA patients possess hotspot mutations in the requisite heterodimer partner of PPARG, RXRA (S427F, S427Y). We used genetic perturbation to study the role of PPARG in bladder cancer. Our results show that overexpression of RXRA and PPARG mutant alleles activate expression of PPARG and PPARA target genes in a ligand-independent manner, and that bladder cancer cell lines are dependent on PPARG for viability. These findings suggest that PPARG may be a promising therapeutic target for treatment of bladder cancer. Citation Format: Jonathan T. Goldstein, Craig Strathdee, Fujiko Duke, Juliann Shih, Matthew Meyerson. Validation of PPARG and RXRA as drivers of bladder cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3627. doi:10.1158/1538-7445.AM2017-3627


Cancer Cell | 2016

Erratum: Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma (Cancer Cell (2016) 29(5) (723–736) (S153561081630160X) (10.1016/j.ccell.2016.04.002))

Siyuan Zheng; Andrew D. Cherniack; Ninad Dewal; Richard A. Moffitt; Ludmila Danilova; Bradley A. Murray; Antonio M. Lerario; Tobias Else; Theo Knijnenburg; Giovanni Ciriello; Seungchan Kim; Guillaume Assié; Olena Morozova; Rehan Akbani; Juliann Shih; Katherine A. Hoadley; Toni K. Choueiri; Jens Waldmann; Ozgur Mete; A. Gordon Robertson; Hsin Ta Wu; Benjamin J. Raphael; Lina Shao; Matthew Meyerson; Michael J. Demeure; Felix Beuschlein; Anthony J. Gill; Stan B. Sidhu; Madson Q. Almeida; Maria Candida Barisson Villares Fragoso

Collaboration


Dive into the Juliann Shih's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Hoadley

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rehan Akbani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Siyuan Zheng

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge