Angel Angelov
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Angel Angelov.
Microbial Cell Factories | 2011
Rudi F. Vogel; Melanie Pavlovic; Matthias A. Ehrmann; Arnim Wiezer; Heiko Liesegang; Stefanie Offschanka; Sonja Voget; Angel Angelov; Georg Böcker; Wolfgang Liebl
Sourdough has played a significant role in human nutrition and culture for thousands of years and is still of eminent importance for human diet and the bakery industry. Lactobacillus sanfranciscensis is the predominant key bacterium in traditionally fermented sourdoughs.The genome of L. sanfranciscensis TMW 1.1304 isolated from an industrial sourdough fermentation was sequenced with a combined Sanger/454-pyrosequencing approach followed by gap closing by walking on fosmids. The sequencing data revealed a circular chromosomal sequence of 1,298,316 bp and two additional plasmids, pLS1 and pLS2, with sizes of 58,739 bp and 18,715 bp, which are predicted to encode 1,437, 63 and 19 orfs, respectively. The overall GC content of the chromosome is 34.71%. Several specific features appear to contribute to the ability of L. sanfranciscensis to outcompete other bacteria in the fermentation. L. sanfranciscensis contains the smallest genome within the lactobacilli and the highest density of ribosomal RNA operons per Mbp genome among all known genomes of free-living bacteria, which is important for the rapid growth characteristics of the organism. A high frequency of gene inactivation and elimination indicates a process of reductive evolution. The biosynthetic capacity for amino acids scarcely availably in cereals and exopolysaccharides reveal the molecular basis for an autochtonous sourdough organism with potential for further exploitation in functional foods. The presence of two CRISPR/cas loci versus a high number of transposable elements suggests recalcitrance to gene intrusion and high intrinsic genome plasticity.
Systematic and Applied Microbiology | 2009
Angel Angelov; Markus Mientus; Susanne Liebl; Wolfgang Liebl
A new cloning system is described, which allows the construction of large-insert fosmid libraries in Escherichia coli and the transfer of the recombinant libraries to the extreme thermophile Thermus thermophilus via natural transformation. Libraries are established in the thermophilic host by site-specific chromosomal insertion of the recombinant fosmids via single crossover or double crossover recombination at the T. thermophilus pyr locus. Comparative screening of a fosmid library constructed from genomic DNA from the thermophilic spirochaete, Spirochaeta thermophila, for clones expressing thermoactive xylanase activity revealed that 50% of the fosmids that conferred xylanase activity upon the corresponding T. thermophilus transformants did not give rise to xylanase-positive E. coli clones, indicating that significantly more S. thermophila genes are functionally expressed in T. thermophilus than in E. coli. The novel T. thermophilus host/vector system may be of value for the construction and functional screening of recombinant DNA libraries from individual thermophilic or extremely thermophilic organisms as well as from complex metagenomes isolated from thermophilic microbial communities.
Applied Microbiology and Biotechnology | 2014
Wolfgang Liebl; Angel Angelov; Julia Juergensen; Jennifer Chow; Anita Loeschcke; Thomas Drepper; Thomas Classen; Jörg Pietruzska; Armin Ehrenreich; Wolfgang R. Streit; Karl-Erich Jaeger
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.
Applied and Environmental Microbiology | 2012
Sebastian Hiessl; Jörg Schuldes; Andrea Thürmer; Tobias Halbsguth; Daniel Bröker; Angel Angelov; Wolfgang Liebl; Rolf Daniel; Alexander Steinbüchel
ABSTRACT The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.
Advances in Applied Microbiology | 2013
Benedikt Leis; Angel Angelov; Wolfgang Liebl
Microorganisms are the most abundant and widely spread organisms on earth. They colonize a huge variety of natural and anthropogenic environments, including very specialized ecological niches and even extreme habitats, which are made possible by the immense metabolic diversity and genetic adaptability of microbes. As most of the organisms from environmental samples defy cultivation, cultivation-independent metagenomics approaches have been applied since more than one decade to access and characterize the phylogenetic diversity in microbial communities as well as their metabolic potential and ecological functions. Thereby, metagenomics has fully emerged as an own scientific field for mining new biocatalysts for many industrially relevant processes in biotechnology and pharmaceutics. This review summarizes common metagenomic approaches ranging from sampling, isolation of nucleic acids, construction of metagenomic libraries and their evaluation. Sequence-based screenings implement next-generation sequencing platforms, microarrays or PCR-based methods, while function-based analysis covers heterologous expression of metagenomic libraries in diverse screening setups. Major constraints and advantages of each strategy are described. The importance of alternative host-vector systems is discussed, and in order to underline the role of phylogenetic and physiological distance from the gene donor and the expression host employed, a case study is presented that describes the screening of a genomic library from an extreme thermophilic bacterium in both Escherichia coli and Thermus thermophilus. Metatranscriptomics, metaproteomics and single-cell-based methods are expected to complement metagenomic screening efforts to identify novel biocatalysts from environmental samples.
Frontiers in Microbiology | 2015
Benedikt Leis; Angel Angelov; Markus Mientus; Haijuan Li; Vu Thuy Trang Pham; Benjamin Lauinger; Patrick Bongen; Jörg Pietruszka; Luís G. Gonçalves; Helena Santos; Wolfgang Liebl
Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and preliminarily characterized. Our work underscores the benefit of using additional screening hosts other than E. coli for the identification of novel biocatalysts with industrial relevance.
Journal of Bacteriology | 2006
Angel Angelov; Mateusz Putyrski; Wolfgang Liebl
The genes encoding a putative α-glucosidase (aglA) and an α-mannosidase (manA) appear to be physically clustered in the genome of the extreme acidophile Picrophilus torridus, a situation not found previously in any other organism possessing aglA or manA homologs. While archaeal α-glucosidases have been described, no α-mannosidase enzymes from the archaeal kingdom have been reported previously. Transcription start site mapping and Northern blot analysis revealed that despite their colinear orientation and the small intergenic space, the genes are independently transcribed, both producing leaderless mRNA. aglA and manA were cloned and overexpressed in Escherichia coli, and the purified recombinant enzymes were characterized with respect to their physicochemical and biochemical properties. AglA displayed strict substrate specificity and hydrolyzed maltose, as well as longer α-1,4-linked maltooligosaccharides. ManA, on the other hand, hydrolyzed all possible linkage types of α-glycosidically linked mannose disaccharides and was able to hydrolyze α3,α6-mannopentaose, which represents the core structure of many triantennary N-linked carbohydrates in glycoproteins. The probable physiological role of the two enzymes in the utilization of exogenous glycoproteins and/or in the turnover of the organisms own glycoproteins is discussed.
FEBS Journal | 2005
Angel Angelov; Ole Fütterer; Oliver Valerius; Gerhard H. Braus; Wolfgang Liebl
In Picrophilus torridus, a euryarchaeon that grows optimally at 60 °C and pH 0.7 and thus represents the most acidophilic thermophile known, glucose oxidation is the first proposed step of glucose catabolism via a nonphosphorylated variant of the Entner–Doudoroff pathway, as deduced from the recently completed genome sequence of this organism. The P. torridus gene for a glucose dehydrogenase was cloned and expressed in Escherichia coli, and the recombinant enzyme, GdhA, was purified and characterized. Based on its substrate and coenzyme specificity, physicochemical characteristics, and mobility during native PAGE, GdhA apparently resembles the main glucose dehydrogenase activity present in the crude extract of P. torridus DSM 9790 cells. The glucose dehydrogenase was partially purified from P. torridus cells and identified by MS to be identical with the recombinant GdhA. P. torridus GdhA preferred NADP+ over NAD+ as the coenzyme, but was nonspecific for the configuration at C‐4 of the sugar substrate, oxidizing both glucose and its epimer galactose (Km values 10.0 and 4.5 mm, respectively). Detection of a dual‐specific glucose/galactose dehydrogenase points to the possibility that a ‘promiscuous’ Entner–Doudoroff pathway may operate in P. torridus, similar to the one recently postulated for the crenarchaeon Sulfolobus solfataricus. Based on Zn2+ supplementation and chelation experiments, the P. torridus GdhA appears to contain structurally important zinc, and conserved metal‐binding residues suggest that the enzyme also contains a zinc ion near the catalytic site, similar to the glucose dehydrogenase enzymes from yeast and Thermoplasma acidophilum. Strikingly, NADPH, one of the products of the GdhA reaction, is unstable under the conditions thought to prevail in Picrophilus cells, which have been reported to maintain the lowest cytoplasmic pH known (pH 4.6). At the optimum growth temperature for P. torridus, 60 °C, the half‐life of NADPH at pH 4.6 was merely 2.4 min, and only 1.7 min at 65 °C (maximum growth temperature). This finding suggests a rapid turnover of NADPH in Picrophilus.
Microbial Biotechnology | 2010
Katharina Drzewiecki; Angel Angelov; Meike Ballschmiter; Klaus-Jürgen Tiefenbach; Reinhard Sterner; Wolfgang Liebl
An esterase which is encoded within a Thermotoga maritima chromosomal gene cluster for xylan degradation and utilization was characterized after heterologous expression of the corresponding gene in Escherichia coli and purification of the enzyme. The enzyme, designated AxeA, shares amino acid sequence similarity and its broad substrate specificity with the acetyl xylan esterase from Bacillus pumilus, the cephalosporin C deacetylase from Bacillus subtilis, and other (putative) esterases, allowing its classification as a member of carbohydrate esterase family 7. The recombinant enzyme displayed activity with p‐nitrophenyl‐acetate as well as with various acetylated sugar substrates such as glucose penta‐acetate, acetylated oat spelts xylan and DMSO (dimethyl sulfoxide)‐extracted beechwood xylan, and with cephalosporin C. Thermotoga maritima AxeA represents the most thermostable acetyl xylan esterase known to date. In a 10 min assay at its optimum pH of 6.5 the enzymes activity peaked at 90°C. The inactivation half‐life of AxeA at a protein concentration of 0.3 µg µl−1 in the absence of substrate was about 13 h at 98°C and about 67 h at 90°C. Differential scanning calorimetry analysis of the thermal stability of AxeA corroborated its extreme heat resistance. A multi‐phasic unfolding behaviour was found, with two apparent exothermic peaks at approximately 100–104°C and 107.5°C. In accordance with the crystal structure, gel filtration analysis at ambient temperature revealed that the enzyme has as a homohexameric oligomerization state, but a dimeric form was also found.
Systematic and Applied Microbiology | 2013
Angel Angelov; Haijuan Li; Andreas J. Geissler; Benedikt Leis; Wolfgang Liebl
In this work we describe the conditional toxic effect of the expression of enzymes that cleave 5-bromo-4-chloro-3-indolyl (BCI) substrates and its use as a new counterselection principle useful for the generation of clean and unmarked mutations in the genomes of bacteria. The application of this principle was demonstrated in the thermophile Thermus thermophilus HB27 and in a mesophile for which currently no counterselection markers are available, Micrococcus luteus ATCC 27141. For T. thermophilus, the indigogenic substrate BCI-β-glucoside was used in combination with the T. thermophilus β-glucosidase gene (bgl). For M. luteus, a combination of BCI-β-galactoside and the E. coli lacZ gene was implemented. We observed a strong growth-inhibiting effect when the strains were grown on agar plates containing the appropriate BCI substrates, the inhibition being proportional to the substrate concentration and the level of bgl/lacZ expression. The growth inhibition apparently depends on intracellular BCI substrate cleavage and accumulation of toxic indoxyl precipitates. The bgl and lacZ genes were used as counterselection markers for the rapid generation of scar-less chromosomal deletions in T. thermophilus HB27 (both in a Δbgl and in a wild type background) and in M. luteus ATCC 27141. In addition to Thermus and Micrococcus, sensitivity to BCI substrate cleavage was observed for other Gram-negative and Gram-positive species belonging to various bacterial phyla, including representatives of the genera Staphylococcus, Bacillus, Corynebacterium, Rhodococcus, Paracoccus and Xanthomonas. Thus, the toxicity of indoxyl derivative accumulation upon BCI substrate cleavage can be used for selection purposes in a broad range of microorganisms.