Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Angioletta Coradini is active.

Publication


Featured researches published by Angioletta Coradini.


Science | 2012

Dawn at Vesta: Testing the Protoplanetary Paradigm

C. T. Russell; C.A. Raymond; Angioletta Coradini; Harry Y. McSween; Maria T. Zuber; A. Nathues; M.C. De Sanctis; R. Jaumann; Alexander S. Konopliv; Frank Preusker; Sami W. Asmar; Ryan S. Park; Robert W. Gaskell; H. U. Keller; S. Mottola; Thomas Roatsch; Jennifer E.C. Scully; David E. Smith; Pasquale Tricarico; Michael J. Toplis; Ulrich R. Christensen; William C. Feldman; D. J. Lawrence; Timothy J. McCoy; Thomas H. Prettyman; Robert C. Reedy; M. E. Sykes; Timothy N. Titus

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta’s south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta’s crust by melting of a chondritic parent body. Vesta’s mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawns results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.


Nature | 2004

Perennial water ice identified in the south polar cap of Mars.

Jean-Pierre Bibring; Y. Langevin; F. Poulet; A. Gendrin; B. Gondet; Michel Berthé; Alain Soufflot; P. Drossart; M. Combes; G. Belluci; V.I. Moroz; N. Mangold; Bernard Schmitt; Stephane Erard; Olivier Forni; N. Manaud; G. Poulleau; Th. Encrenaz; Thierry Fouchet; Riccardo Melchiorri; F. Altieri; V. Formisano; G. Bonello; S. Fonti; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Kottsov; Nikolay Ignatiev; Dmitri Titov

The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.


Science | 2015

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni; Angioletta Coradini; G. Filacchione; S. Erard; Gabriele Arnold; P. Drossart; M.C. De Sanctis; D. Bockelee-Morvan; M. T. Capria; F. Tosi; Cedric Leyrat; B. Schmitt; Eric Quirico; P. Cerroni; V. Mennella; A. Raponi; M. Ciarniello; T. B. McCord; L. V. Moroz; E. Palomba; E. Ammannito; M. A. Barucci; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; Robert W. Carlson; U. Carsenty; L. Colangeli

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ−1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.


Nature | 2005

Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

Roger N. Clark; Robert H. Brown; R. Jaumann; Dale P. Cruikshank; Robert M. Nelson; Bonnie J. Buratti; Thomas B. McCord; Jonathan I. Lunine; Kevin H. Baines; G. Bellucci; Jean-Pierre Bibring; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Formisano; Yves Langevin; Dennis L. Matson; V. Mennella; P. D. Nicholson; Bruno Sicardy; Christophe Sotin; Todd M. Hoefen; John Curchin; Gary B. Hansen; Karl Hibbits; Klaus-Dieter Matz

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturns regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini–Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebes surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.


Icarus | 1987

Classification of asteroids using G-mode analysis

M. Antonietta Barucci; M. Teresa Capria; Angioletta Coradini; M. Fulchignoni

Abstract A revised version of the G-mode multivariate statistics has been used to classify the 438 asteroids for which the eight-color photometric data and IRAS albedo are available. At a confidence level of 99.7%, seven taxonomic units of asteroids are separated by the method, while with higher values of the confidence level no separation occurs in the adopted sample. Decreasing the confidence level (i.e., accepting a higher probability of a wrong decision in classifying the asteroids), we obtain a more detailed grouping, which results in a successive subdivision of the first units found. At a confidence level of 97.5%, two groups are added to the original ones: C asteroids are in fact subdivided on the basis of their albedo into three different units. In total, 18 groups of objects can be distinguished, showing small deviations from the trend of the original groups. The method gives a quantitative estimate of the significance of the variables used. A comparison with the results obtained by D. J. Tholen (1984, Asteroid Taxonomy from Cluster Analysis of Photometry , Doctoral thesis, University of Arizona) shows that the nine principal units coincide with the Tholens A, S, C, D, M, E, BU, G, (Q, R, S) classes, while the other groups are subdivisions of these classes, particularly of the S, D, and B ones. The method allows us to interpret the obtained results in terms of natural processes which characterized the history of asteroid population.


Nature | 2007

South-polar features on Venus similar to those near the north pole

Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.


Nature | 2007

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express

P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.


The Astrophysical Journal | 2005

Cassini Visual and Infrared Mapping Spectrometer Observations of Iapetus: Detection of CO2

Bonnie J. Buratti; Dale P. Cruikshank; Robert H. Brown; Roger N. Clark; James Monie Bauer; R. Jaumann; T. B. McCord; D. P. Simonelli; Charles Arthur Hibbitts; Gary B. Hansen; Tobias Owen; Kevin H. Baines; G. Bellucci; Jean-Pierre Bibring; F. Capaccioni; P. Cerroni; Angioletta Coradini; Pierre Drossart; V. Formisano; Yves Langevin; Dennis L. Matson; V. Mennella; Robert M. Nelson; P. D. Nicholson; Bruno Sicardy; Christophe Sotin; Ted L. Roush; Kenneth Soderlund; A. Muradyan

The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite Iapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe2O3. The high-albedo hemisphere is modeled with H2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellites orbital motion.


Science | 2011

The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS

Angioletta Coradini; F. Capaccioni; S. Erard; Gabriele Arnold; M.C. De Sanctis; G. Filacchione; F. Tosi; M. A. Barucci; M. T. Capria; E. Ammannito; D. Grassi; Giuseppe Piccioni; S. Giuppi; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; D. Bockelee-Morvan; F. Carraro; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; Michael R. Combi; J. Crovisier; P. Drossart; E. T. Encrenaz; C. Federico

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter−2 kelvin−1 second−0.5, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.


Icarus | 1976

Latitudinal variation of wind erosion of crater ejecta deposits on Mars

Raymond E. Arvidson; Marcello Coradini; A. Carusi; Angioletta Coradini; Marcello Fulchignoni; C. Federico; R. Funiciello; M. Salomone

Abstract Wind erosion seems to be the dominant process eroding crater ejecta deposits and sorrounding materials on Mars. In the equatorial zone, ejecta deposits are eroded back by scarp recession, where scarp heights appear to be approximately equivalent to ejecta thickness. In mantled areas, escarpments develop by relatively rapid deflation of sorrounding aeolian debris, leaving the ejecta deposit (continuous deposit and zone of high density of secondary craters) standing high above sorrounding terrain. If the rate of scarp recession is controlled by the rate of aeolian undercutting of escarpment bases, then recession rates may scale roughly as the inverse with respect to scarp height. Thus, preferential preservation of ejecta deposits emplaced in thickest aeolian debris may occur. An empirical model developed for wind erosion of ejecta deposits in nonmantled areas suggests that removal of ejecta materials on the average is exceedingly slow (∼10 −5 m/yr for 10m high scarp). On the other hand, rapid deflation of aeolian debris around crater ejecta is implied. Results suggest high differential aeolian erosion rates that are a function of both grain sizes and large-scale surface roughness. Aeolian activity on Mars has probably been dominated by rapid recycling of fine-grained debris, the bulk of which formed under more erosive conditions prevalent in the early history of Mars.

Collaboration


Dive into the Angioletta Coradini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale P. Cruikshank

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin H. Baines

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christophe Sotin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge