Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Capaccioni is active.

Publication


Featured researches published by F. Capaccioni.


Nature | 2004

Perennial water ice identified in the south polar cap of Mars.

Jean-Pierre Bibring; Y. Langevin; F. Poulet; A. Gendrin; B. Gondet; Michel Berthé; Alain Soufflot; P. Drossart; M. Combes; G. Belluci; V.I. Moroz; N. Mangold; Bernard Schmitt; Stephane Erard; Olivier Forni; N. Manaud; G. Poulleau; Th. Encrenaz; Thierry Fouchet; Riccardo Melchiorri; F. Altieri; V. Formisano; G. Bonello; S. Fonti; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Kottsov; Nikolay Ignatiev; Dmitri Titov

The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.


Science | 2012

Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta

M.C. De Sanctis; E. Ammannito; M. T. Capria; F. Tosi; F. Capaccioni; F. Zambon; F. Carraro; S. Fonte; A. Frigeri; R. Jaumann; G. Magni; S. Marchi; T. B. McCord; Lucy A. McFadden; Harry Y. McSween; D. W. Mittlefehldt; A. Nathues; E. Palomba; Carle M. Pieters; C.A. Raymond; C. T. Russell; Michael J. Toplis; D. Turrini

A New Dawn Since 17 July 2011, NASAs spacecraft Dawn has been orbiting the asteroid Vesta—the second most massive and the third largest asteroid in the solar system (see the cover). Russell et al. (p. 684) use Dawns observations to confirm that Vesta is a small differentiated planetary body with an inner core, and represents a surviving proto-planet from the earliest epoch of solar system formation; Vesta is also confirmed as the source of the howardite-eucrite-diogenite (HED) meteorites. Jaumann et al. (p. 687) report on the asteroids overall geometry and topography, based on global surface mapping. Vestas surface is dominated by numerous impact craters and large troughs around the equatorial region. Marchi et al. (p. 690) report on Vestas complex cratering history and constrain the age of some of its major regions based on crater counts. Schenk et al. (p. 694) describe two giant impact basins located at the asteroids south pole. Both basins are young and excavated enough amounts of material to form the Vestoids—a group of asteroids with a composition similar to that of Vesta—and HED meteorites. De Sanctis et al. (p. 697) present the mineralogical characterization of Vesta, based on data obtained by Dawns visual and infrared spectrometer, revealing that this asteroid underwent a complex magmatic evolution that led to a differentiated crust and mantle. The global color variations detailed by Reddy et al. (p. 700) are unlike those of any other asteroid observed so far and are also indicative of a preserved, differentiated proto-planet. Spacecraft data provide a detailed characterization of the second most massive asteroid in the solar system. The mineralogy of Vesta, based on data obtained by the Dawn spacecraft’s visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component, and equatorial regions, which show a higher eucritic component. The lithologic distribution indicates a deeper diogenitic crust, exposed after excavation by the impact that formed Rheasilvia, and an upper eucritic crust. Evidence for mineralogical stratigraphic layering is observed on crater walls and in ejecta. This is broadly consistent with magma-ocean models, but spectral variability highlights local variations, which suggests that the crust can be a complex assemblage of eucritic basalts and pyroxene cumulates. Overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle.


Science | 2015

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni; Angioletta Coradini; G. Filacchione; S. Erard; Gabriele Arnold; P. Drossart; M.C. De Sanctis; D. Bockelee-Morvan; M. T. Capria; F. Tosi; Cedric Leyrat; B. Schmitt; Eric Quirico; P. Cerroni; V. Mennella; A. Raponi; M. Ciarniello; T. B. McCord; L. V. Moroz; E. Palomba; E. Ammannito; M. A. Barucci; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; Robert W. Carlson; U. Carsenty; L. Colangeli

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ−1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.


Nature | 2015

Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres

M.C. De Sanctis; E. Ammannito; A. Raponi; S. Marchi; T. B. McCord; Harry Y. McSween; F. Capaccioni; M. T. Capria; F.G. Carrozzo; M. Ciarniello; A. Longobardo; F. Tosi; S. Fonte; M. Formisano; A. Frigeri; M. Giardino; G. Magni; E. Palomba; D. Turrini; F. Zambon; J.-P. Combe; W. C. Feldman; R. Jaumann; Lucy A. McFadden; Carle M. Pieters; T.H. Prettyman; Michael J. Toplis; C.A. Raymond; C. T. Russell

Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface. In particular, brucite has been suggested from analysis of the mid-infrared spectrum of Ceres. But the lack of spectral data across telluric absorption bands in the wavelength region 2.5 to 2.9 micrometres—where the OH stretching vibration and the H2O bending overtone are found—has precluded definitive identifications. In addition, water vapour around Ceres has recently been reported, possibly originating from localized sources. Here we report spectra of Ceres from 0.4 to 5 micrometres acquired at distances from ~82,000 to 4,300 kilometres from the surface. Our measurements indicate widespread ammoniated phyllosilicates across the surface, but no detectable water ice. Ammonia, accreted either as organic matter or as ice, may have reacted with phyllosilicates on Ceres during differentiation. This suggests that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt.


Nature | 2012

Dark material on Vesta from the infall of carbonaceous volatile-rich material

T. B. McCord; Jian-Yang Li; J.-P. Combe; Harry Y. McSween; R. Jaumann; Vishnu Reddy; F. Tosi; David A. Williams; David T. Blewett; D. Turrini; E. Palomba; Carle M. Pieters; M.C. De Sanctis; E. Ammannito; M. T. Capria; L. Le Corre; A. Longobardo; A. Nathues; D. W. Mittlefehldt; Stefan E. Schröder; Harald Hiesinger; Andrew W. Beck; F. Capaccioni; U. Carsenty; H. U. Keller; Brett W. Denevi; Jessica M. Sunshine; C.A. Raymond; C. T. Russell

Localized dark and bright materials, often with extremely different albedos, were recently found on Vesta’s surface. The range of albedos is among the largest observed on Solar System rocky bodies. These dark materials, often associated with craters, appear in ejecta and crater walls, and their pyroxene absorption strengths are correlated with material brightness. It was tentatively suggested that the dark material on Vesta could be either exogenic, from carbon-rich, low-velocity impactors, or endogenic, from freshly exposed mafic material or impact melt, created or exposed by impacts. Here we report Vesta spectra and images and use them to derive and interpret the properties of the ‘pure’ dark and bright materials. We argue that the dark material is mainly from infall of hydrated carbonaceous material (like that found in a major class of meteorites and some comet surfaces), whereas the bright material is the uncontaminated indigenous Vesta basaltic soil. Dark material from low-albedo impactors is diffused over time through the Vestan regolith by impact mixing, creating broader, diffuse darker regions and finally Vesta’s background surface material. This is consistent with howardite–eucrite–diogenite meteorites coming from Vesta.


Nature | 2005

Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

Roger N. Clark; Robert H. Brown; R. Jaumann; Dale P. Cruikshank; Robert M. Nelson; Bonnie J. Buratti; Thomas B. McCord; Jonathan I. Lunine; Kevin H. Baines; G. Bellucci; Jean-Pierre Bibring; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Formisano; Yves Langevin; Dennis L. Matson; V. Mennella; P. D. Nicholson; Bruno Sicardy; Christophe Sotin; Todd M. Hoefen; John Curchin; Gary B. Hansen; Karl Hibbits; Klaus-Dieter Matz

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturns regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini–Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebes surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.


Nature | 2016

Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres

M.C. De Sanctis; A. Raponi; E. Ammannito; M. Ciarniello; Michael J. Toplis; Harry Y. McSween; Julie C. Castillo-Rogez; Bethany L. Ehlmann; F.G. Carrozzo; S. Marchi; F. Tosi; F. Zambon; F. Capaccioni; M. T. Capria; S. Fonte; M. Formisano; A. Frigeri; M. Giardino; A. Longobardo; G. Magni; E. Palomba; Lucy A. McFadden; Carle M. Pieters; R. Jaumann; Paul M. Schenk; R. Mugnuolo; C. A. Raymond; C. T. Russell

The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn’s sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.


The Astrophysical Journal | 2005

Cassini Visual and Infrared Mapping Spectrometer Observations of Iapetus: Detection of CO2

Bonnie J. Buratti; Dale P. Cruikshank; Robert H. Brown; Roger N. Clark; James Monie Bauer; R. Jaumann; T. B. McCord; D. P. Simonelli; Charles Arthur Hibbitts; Gary B. Hansen; Tobias Owen; Kevin H. Baines; G. Bellucci; Jean-Pierre Bibring; F. Capaccioni; P. Cerroni; Angioletta Coradini; Pierre Drossart; V. Formisano; Yves Langevin; Dennis L. Matson; V. Mennella; Robert M. Nelson; P. D. Nicholson; Bruno Sicardy; Christophe Sotin; Ted L. Roush; Kenneth Soderlund; A. Muradyan

The Visual and Infrared Mapping Spectrometer (VIMS) instrument aboard the Cassini spacecraft obtained its first spectral map of the satellite Iapetus in which new absorption bands are seen in the spectra of both the low-albedo hemisphere and the H2O ice-rich hemisphere. Carbon dioxide is identified in the low-albedo material, probably as a photochemically produced molecule that is trapped in H2O ice or in some mineral or complex organic solid. Other absorption bands are unidentified. The spectrum of the low-albedo hemisphere is satisfactorily modeled with a combination of organic tholin, poly-HCN, and small amounts of H2O ice and Fe2O3. The high-albedo hemisphere is modeled with H2O ice slightly darkened with tholin. The detection of CO2 in the low-albedo material on the leading hemisphere supports the contention that it is carbon-bearing material from an external source that has been swept up by the satellites orbital motion.


Science | 2016

Distribution of phyllosilicates on the surface of Ceres

E. Ammannito; M.C. Desanctis; M. Ciarniello; A. Frigeri; F.G. Carrozzo; J.-Ph. Combe; Bethany L. Ehlmann; S. Marchi; Harry Y. McSween; A. Raponi; Michael J. Toplis; F. Tosi; Julie C. Castillo-Rogez; F. Capaccioni; M. T. Capria; S. Fonte; M. Giardino; R. Jaumann; A. Longobardo; Steven Peter Joy; G. Magni; T. B. McCord; L. A. McFadden; E. Palomba; Carle M. Pieters; C. Polanskey; Marc D. Rayman; C.A. Raymond; Paul M. Schenk; F. Zambon

INTRODUCTION The surface of the dwarf planet Ceres is known to host phyllosilicate minerals, but their distribution and origin have not previously been determined. Phyllosilicates are hydrated silicates, and their presence on the surface of Ceres is intriguing given that their structure evolves through an aqueous alteration process. In addition, some phyllosilicates are known to bear NH4, which places a constraint on the pH and redox conditions during the evolution of Ceres. We studied the distribution of phyllosilicates across the planet’s surface to better understand the evolutionary pathway of Ceres. RATIONALE Using the data acquired by the mapping spectrometer (VIR) onboard the Dawn spacecraft, we mapped the spatial distribution of different minerals on Ceres on the basis of their diagnostic absorption features in visible and infrared spectra. We studied the phyllosilicates through their OH-stretch fundamental absorption at about 2.7 µm and through the NH4 absorption at about 3.1 µm. From our composition maps, we infer the origin of the materials identified. RESULTS We found that Mg- and NH4-bearing phyllosilicates are ubiquitous across the surface of Ceres and that their chemical composition is fairly uniform. The widespread presence of these two types of minerals is a strong indication of a global and extensive aqueous alteration—i.e., the presence of water at some point in Ceres’ geological history. Although the detected phyllosilicates are compositionally homogeneous, we found variations in the intensity of their absorption features in the 3-µm region of the reflectance spectrum. Such variations are likely due to spatial variability in relative mineral abundance (see the figure). CONCLUSION The large-scale regional variations evident in the figure suggest lateral heterogeneity in surficial phyllosilicate abundance on scales of several hundreds of kilometers. Terrains associated with the Kerwan crater (higher concentration of phyllosilicates) appear smooth, whereas the Yalode crater (lower concentration of phyllosilicates) is characterized by both smooth and rugged terrains. These distinct morphologies and phyllosilicate concentrations observed in two craters that are similar in size may reflect different compositions and/or rheological properties. On top of this large-scale lateral heterogeneity, small-scale variations associated with individual craters could result from different proportions of mixed materials in a stratified upper crustal layer that has been exposed by impacts. Variations associated with fresh craters, such as the 34-km-diameter Haulani, indicate the presence of crustal variations over a vertical scale of a few kilometers, whereas much larger craters, such as the 126-km-diameter Dantu, suggest that such stratification may extend for at least several tens of kilometers. Abundance maps. Qualitative maps of the abundances of (top) phyllosilicates and (bottom) NH4, based on the depth of their absorption features. The two maps have a similar global pattern, although they differ in some localized regions such as Urvara. The scale bar is valid at the equator. The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers). We found that magnesium- and ammonium-bearing minerals are ubiquitous across the surface. Variations in the strength of the absorption features are spatially correlated and indicate considerable variability in the relative abundance of the phyllosilicates, although their composition is fairly uniform. These data, along with the distinctive spectral properties of Ceres relative to other asteroids and carbonaceous meteorites, indicate that the phyllosilicates were formed endogenously by a globally widespread and extensive alteration process.


Science | 2011

The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS

Angioletta Coradini; F. Capaccioni; S. Erard; Gabriele Arnold; M.C. De Sanctis; G. Filacchione; F. Tosi; M. A. Barucci; M. T. Capria; E. Ammannito; D. Grassi; Giuseppe Piccioni; S. Giuppi; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; D. Bockelee-Morvan; F. Carraro; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; Michael R. Combi; J. Crovisier; P. Drossart; E. T. Encrenaz; C. Federico

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter−2 kelvin−1 second−0.5, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.

Collaboration


Dive into the F. Capaccioni's collaboration.

Researchain Logo
Decentralizing Knowledge