Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Filacchione is active.

Publication


Featured researches published by G. Filacchione.


Science | 2015

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni; Angioletta Coradini; G. Filacchione; S. Erard; Gabriele Arnold; P. Drossart; M.C. De Sanctis; D. Bockelee-Morvan; M. T. Capria; F. Tosi; Cedric Leyrat; B. Schmitt; Eric Quirico; P. Cerroni; V. Mennella; A. Raponi; M. Ciarniello; T. B. McCord; L. V. Moroz; E. Palomba; E. Ammannito; M. A. Barucci; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; Robert W. Carlson; U. Carsenty; L. Colangeli

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ−1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.


Archive | 2009

Ring Particle Composition and Size Distribution

Jeffrey N. Cuzzi; R.N. Clark; G. Filacchione; Richard G. French; Robert E. Johnson; Essam A. Marouf; Linda J. Spilker

We review recent progress concerning the composition and size distribution of the particles in Saturns main ring system, and describe how these properties vary from place to place. We discuss how the particle size distribution is measured, and how it varies radially. We note the discovery of unusually large “particles” in restricted radial bands. We discuss the properties of the grainy regoliths of the ring particles. We review advances in understanding of ring particle composition from spectrophotometry at UV, visual and near-IR wavelengths, multicolor photometry at visual wavelengths, and thermal emission. We discuss the observed ring atmosphere and its interpretation and, briefly, models of the evolution of ring composition. We connect the ring composition with what has been learned recently about the composition of other icy objects in the Saturn system and beyond. Because the rings are so thoroughly and rapidly structurally evolved, the composition of the rings may be our best clue as to their origin; however, the evolution of ring particle composition over time must first be understood.


Science | 2011

The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS

Angioletta Coradini; F. Capaccioni; S. Erard; Gabriele Arnold; M.C. De Sanctis; G. Filacchione; F. Tosi; M. A. Barucci; M. T. Capria; E. Ammannito; D. Grassi; Giuseppe Piccioni; S. Giuppi; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; D. Bockelee-Morvan; F. Carraro; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; Michael R. Combi; J. Crovisier; P. Drossart; E. T. Encrenaz; C. Federico

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter−2 kelvin−1 second−0.5, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.


Science | 2010

An Evolving View of Saturn’s Dynamic Rings

Jeffrey N. Cuzzi; Joseph A. Burns; Sebastien Charnoz; R.N. Clark; Josh Colwell; Luke Dones; Larry W. Esposito; G. Filacchione; Richard G. French; Matthew Mckay Hedman; Sascha Kempf; Essam A. Marouf; Carl D. Murray; P. D. Nicholson; Carolyn C. Porco; Juergen Schmidt; Mark R. Showalter; Linda J. Spilker; Joseph Nicholas Spitale; Ralf Srama; Miodrag Sremcevic; Matthew S. Tiscareno; John Wilfred Weiss

Saturns Secrets Probed The Cassini spacecraft was launched on 15 October 1997. It took it almost 7 years to reach Saturn, the second-largest planet in the solar system. After almost 6 years of observations of the series of interacting moons, rings, and magnetospheric plasmas, known as the Kronian system, Cuzzi et al. (p. 1470) review our current understanding of Saturns rings—the most extensive and complex in the solar system—and draw parallels with circumstellar disks. Gombosi and Ingersoll (p. 1476; see the cover) review what is known about Saturns atmosphere, ionosphere, and magnetosphere. We review our understanding of Saturn’s rings after nearly 6 years of observations by the Cassini spacecraft. Saturn’s rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks.


Nature | 2015

The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko

M.C. De Sanctis; F. Capaccioni; M. Ciarniello; G. Filacchione; M. Formisano; S. Mottola; A. Raponi; F. Tosi; D. Bockelee-Morvan; S. Erard; Cedric Leyrat; B. Schmitt; E. Ammannito; Gabriele Arnold; M. A. Barucci; Michael R. Combi; M. T. Capria; P. Cerroni; Wing-Huen Ip; E. Kuehrt; T. B. McCord; E. Palomba; Pierre Beck; Eric Quirico

Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov–Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov–Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.


Nature | 2016

Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko

G. Filacchione; M.C. De Sanctis; F. Capaccioni; A. Raponi; F. Tosi; M. Ciarniello; P. Cerroni; G. Piccioni; M. T. Capria; E. Palomba; G. Bellucci; Stephane Erard; Dominique Bockelee-Morvan; Cedric Leyrat; Gabriele Arnold; M. A. Barucci; M. Fulchignoni; B. Schmitt; Eric Quirico; R. Jaumann; K. Stephan; A. Longobardo; V. Mennella; A. Migliorini; E. Ammannito; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; R. Carlson

Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.


Icarus | 2012

Saturn's icy satellites and rings investigated by Cassini-VIMS: III - Radial compositional variability

G. Filacchione; F. Capaccioni; M. Ciarniello; Roger N. Clark; Jeffrey N. Cuzzi; P. D. Nicholson; Dale P. Cruikshank; Matthew Mckay Hedman; Bonnie J. Buratti; Jonathan I. Lunine; L. A. Soderblom; F. Tosi; P. Cerroni; Robert H. Brown; T. B. McCord; R. Jaumann; K. Stephan; Kevin H. Baines; E. Flamini

In the last few years Cassini–VIMS, the Visible and Infrared Mapping Spectrometer, returned to us a comprehensive view of the Saturn’s icy satellites and rings. After having analyzed the satellites’ spectral properties (Filacchione, G., Capaccioni, F., McCord, T.B., Coradini, A., Cerroni, P., Bellucci, G., Tosi, F., D’Aversa, E., Formisano, V., Brown, R.H., Baines, K.H., Bibring, J.P., Buratti, B.J., Clark, R.N., Combes, M., Cruikshank, D.P., Drossart, P., Jaumann, R., Langevin, Y., Matson, D.L., Mennella, V., Nelson, R.M., Nicholson, P.D., Sicardy, B., Sotin, C., Hansen, G., Hibbitts, K., Showalter, M., Newman, S. [2007]. Icarus 186, 259–290, paper I) and their distribution across the satellites’ hemispheres (Filacchione, G., Capaccioni, F., Clark, R.N., Cuzzi, J.N., Cruikshank, D.P., Coradini, A., Cerroni, P., Nicholson, P.D., McCord, T.B., Brown, R.H., Buratti, B.J., Tosi, F., Nelson, R.M., Jaumann, R., Stephan, K. [2010]. Icarus 206, 507–523, paper II), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2264 disk-integrated observations of the satellites and a 12 × 700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. Using different VIS and IR spectral indicators, e.g. spectral slopes and band depths, we perform a comparative analysis of these data aimed to measure the distribution of water ice and red contaminant materials across Saturn’s system. The average surface regolith grain sizes are estimated with different indicators through comparison with laboratory and synthetic spectra. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus’ leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5–2.0 μm band depths. Although their orbits are close to the F-ring, Prometheus and Pandora are different in surface composition: Prometheus in fact appears very water ice-rich but at the same time very red at VIS wavelengths. These properties make it very similar to A–B ring particles while Pandora is bluer. Moving outwards, we see the effects of E ring particles, generated by Enceladus plumes, which contaminate satellites surfaces from Mimas out to Rhea. We found some differences between Tethys lagrangian moons, Calypso being much more water ice-rich and bluer than Telesto. Among outer satellites (Hyperion, Iapetus and Phoebe) we observe a linear trend in both water ice decrease and in reddening, Hyperion being the reddest object of the population. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. These bodies are effectively the “connection” elements, both in term of composition and evolution, between the principal satellites and main rings. Finally, we have applied Hapke’s theory to retrieve the best spectral fits to Saturn’s inner regular satellites (from Mimas to Dione) using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (Ciarniello, M., Capaccioni, F., Filacchione, G., Clark, R.N., Cruikshank, D.P., Cerroni, P., Coradini, A., Brown, R.H., Buratti, B.J., Tosi, F., Stephan, K. [2011]. Icarus 214, 541–555).


Astronomy and Astrophysics | 2016

Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta

N. Fougere; Kathrin Altwegg; J.-J. Berthelier; André Bieler; Dominique Bockelee-Morvan; Ursina Maria Calmonte; F. Capaccioni; Michael R. Combi; J. De Keyser; V. Debout; Stephane Erard; Björn Fiethe; G. Filacchione; U. Fink; S. A. Fuselier; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Léna Le Roy; Cedric Leyrat; A. Migliorini; G. Piccioni; G. Rinaldi; Martin Rubin; Y. Shou; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou

Since its rendezvous with comet 67P/Churyumov-Gerasimenko (67P), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the so-called coma, and provide complementary results with remote sensing and in situ measurement techniques, respectively. The data from both ROSINA and VIRTIS instruments suggest that the source regions of H2O and CO2 are not uniformly distributed over the surface of the nucleus even after accounting for the changing solar illumination of the irregularly shaped rotating nucleus. The source regions of H2O and CO2 are also relatively different from one another. Aims. The use of a combination of a formal numerical data inversion method with a fully kinetic coma model is a way to correlate and interpret the information provided by these two instruments to fully understand the volatile environment and activity of comet 67P. Methods. In this work, the nonuniformity of the outgassing activity at the surface of the nucleus is described by spherical harmonics and constrained by ROSINA-DFMS data. This activity distribution is coupled with the local illumination to describe the inner boundary conditions of a 3D direct simulation Monte-Carlo (DSMC) approach using the Adaptive Mesh Particle Simulator (AMPS) code applied to the H2O and CO2 coma of comet 67P. Results. We obtain activity distribution of H2O and CO2 showing a dominant source of H2O in the Hapi region, while more CO2 is produced in the southern hemisphere. The resulting model outputs are analyzed and compared with VIRTIS-M/-H and ROSINA-DFMS measurements, showing much better agreement between model and data than a simpler model assuming a uniform surface activity. The evolution of the H2O and CO2 production rates with heliocentric distance are derived accurately from the coma model showing agreement between the observations from the different instruments and ground-based observations. Conclusions. We derive the activity distributions for H2O and CO2 at the surface of the nucleus described in spherical harmonics, which we couple to the local solar illumination to constitute the boundary conditions of our coma model. The model presented reproduces the coma observations made by the ROSINA and VIRTIS instruments on board the Rosetta spacecraft showing our understanding of the physics of 67P’s coma. This model can be used for further data analyses, such as dust modeling, in a future work.


Astronomy and Astrophysics | 2015

First observations of H2O and CO2 vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta

Dominique Bockelee-Morvan; V. Debout; S. Erard; C. Leyrat; F. Capaccioni; G. Filacchione; N. Fougere; P. Drossart; Gabriele Arnold; Michael R. Combi; B. Schmitt; Jacques Crovisier; M.C. De Sanctis; Th. Encrenaz; E. Kührt; E. Palomba; F. W. Taylor; F. Tosi; G. Piccioni; Uwe Fink; G. P. Tozzi; Antonella M. Barucci; N. Biver; M. T. Capria; M. Combes; Wing-Huen Ip; M. I. Blecka; Florence Henry; S. Jacquinod; Jean-Michel Reess

Context. Outgassing from cometary nuclei involves complex surface and subsurface processes that need to be understood to investigate the composition of cometary ices from coma observations. Aims. We investigate the production of water, carbon dioxide, and carbon monoxide from the nucleus of comet 67P/Churyumov-Gerasimenko (67P). These species have different volatility and are key species of cometary ices. Methods. Using the high spectral-resolution channel of the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-H), we observed the ν3 vibrational bands of H2O and CO2 at 2.67 and 4.27 μm, respectively, from 24 November 2014 to 24 January 2015, when comet 67P was between 2.91 and 2.47 AU from the Sun. Observations were undertaken in limb-viewing geometry at distances from the surface of 0 to 1.5 km and with various line-of-sight (LOS) orientations in the body-fixed frame. A geometry tool was used to characterize the position of the LOS with respect to geomorphologic regions and the illumination properties of these regions. Results. The water production of 67P did not increase much from 2.9 to 2.5 AU. High water column densities are observed for LOS above the neck regions, suggesting they are the most productive in water vapor. While water production is weak in regions with low solar illumination, CO2 is outgassing from both illuminated and non-illuminated regions, which indicates that CO2 sublimates at a depth that is below the diurnal skin depth. The CO2/H2O column density ratio varies from 2 to 60%. For regions that are in sunlight, mean values between 2 and 7% are measured. The lower bound value is likely representative of the CO2/H2O production rate ratio from the neck regions. For carbon monoxide, we derive column density ratios CO/H2O < 1.9% and CO/CO2< 80%. An illumination-driven model, with a uniformly active surface releasing water at a mean rate of 8 × 1025 s-1, provides an overall agreement to VIRTIS-H data, although some mismatches show local surface inhomogeneities in water production. Rotational temperatures of 90–100 K are derived from H2O and CO2 averaged spectra.


Nature | 2007

Surface composition of Hyperion

Dale P. Cruikshank; J. B. Dalton; C.M. Dalle Ore; James Monie Bauer; K. Stephan; G. Filacchione; Amanda R. Hendrix; Carl J. Hansen; Angioletta Coradini; P. Cerroni; F. Tosi; F. Capaccioni; R. Jaumann; Bonnie J. Buratti; R.N. Clark; Robert H. Brown; Robert M. Nelson; T. B. McCord; Kevin H. Baines; P. D. Nicholson; Christophe Sotin; Allan W. Meyer; G. Bellucci; M. Combes; J.-P. Bibring; Yves Langevin; B. Sicardy; Dennis L. Matson; Vittorio Formisano; P. Drossart

Hyperion, Saturn’s eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion’s surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25–26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

Collaboration


Dive into the G. Filacchione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Baines

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale P. Cruikshank

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge