Anne Farret
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anne Farret.
Diabetes | 2012
Marc D. Breton; Anne Farret; Daniela Bruttomesso; Stacey M. Anderson; Lalo Magni; Stephen D. Patek; Chiara Dalla Man; Jerome Place; Susan Demartini; Simone Del Favero; Chiara Toffanin; Colleen Hughes-Karvetski; Eyal Dassau; Howard Zisser; Francis J. Doyle; Giuseppe De Nicolao; Angelo Avogaro; Claudio Cobelli; Eric Renard; Boris P. Kovatchev
Integrated closed-loop control (CLC), combining continuous glucose monitoring (CGM) with insulin pump (continuous subcutaneous insulin infusion [CSII]), known as artificial pancreas, can help optimize glycemic control in diabetes. We present a fundamental modular concept for CLC design, illustrated by clinical studies involving 11 adolescents and 27 adults at the Universities of Virginia, Padova, and Montpellier. We tested two modular CLC constructs: standard control to range (sCTR), designed to augment pump plus CGM by preventing extreme glucose excursions; and enhanced control to range (eCTR), designed to truly optimize control within near normoglycemia of 3.9–10 mmol/L. The CLC system was fully integrated using automated data transfer CGM→algorithm→CSII. All studies used randomized crossover design comparing CSII versus CLC during identical 22-h hospitalizations including meals, overnight rest, and 30-min exercise. sCTR increased significantly the time in near normoglycemia from 61 to 74%, simultaneously reducing hypoglycemia 2.7-fold. eCTR improved mean blood glucose from 7.73 to 6.68 mmol/L without increasing hypoglycemia, achieved 97% in near normoglycemia and 77% in tight glycemic control, and reduced variability overnight. In conclusion, sCTR and eCTR represent sequential steps toward automated CLC, preventing extremes (sCTR) and further optimizing control (eCTR). This approach inspires compelling new concepts: modular assembly, sequential deployment, testing, and clinical acceptance of custom-built CLC systems tailored to individual patient needs.
Journal of diabetes science and technology | 2010
Boris P. Kovatchev; Claudio Cobelli; Eric Renard; Stacey M. Anderson; Marc D. Breton; Stephen D. Patek; William L. Clarke; Daniela Bruttomesso; Alberto Maran; Silvana Costa; Angelo Avogaro; Chiara Dalla Man; Andrea Facchinetti; Lalo Magni; Giuseppe De Nicolao; Jerome Place; Anne Farret
Background: In 2008–2009, the first multinational study was completed comparing closed-loop control (artificial pancreas) to state-of-the-art open-loop therapy in adults with type 1 diabetes mellitus (T1DM). Methods: The design of the control algorithm was done entirely in silico, i.e., using computer simulation experiments with N = 300 synthetic “subjects” with T1DM instead of traditional animal trials. The clinical experiments recruited 20 adults with T1DM at the Universities of Virginia (11); Padova, Italy (6); and Montpellier, France (3). Open-loop and closed-loop admission was scheduled 3–4 weeks apart, continued for 22 h (14.5 h of which were in closed loop), and used a continuous glucose monitor and an insulin pump. The only difference between the two sessions was that insulin dosing was performed by the patient under a physicians supervision during open loop, whereas insulin dosing was performed by a control algorithm during closed loop. Results: In silico design resulted in rapid (less than 6 months compared to years of animal trials) and cost-effective system development, testing, and regulatory approvals in the United States, Italy, and France. In the clinic, compared to open-loop, closed-loop control reduced nocturnal hypoglycemia (blood glucose below 3.9 mmol/liter) from 23 to 5 episodes (p < .01) and increased the amount of time spent overnight within the target range (3.9 to 7.8 mmol/liter) from 64% to 78% (p = .03). Conclusions: In silico experiments can be used as viable alternatives to animal trials for the preclinical testing of insulin treatment strategies. Compared to open-loop treatment under identical conditions, closed-loop control improves the overnight regulation of diabetes.
Diabetes Care | 2011
Guillaume Charpentier; Pierre-Yves Benhamou; D. Dardari; Annie Clergeot; S. Franc; Pauline Schaepelynck-Belicar; B. Catargi; Vincent Melki; Lucy Chaillous; Anne Farret; Jean-Luc Bosson; A. Penfornis
OBJECTIVE To demonstrate that Diabeo software enabling individualized insulin dose adjustments combined with telemedicine support significantly improves HbA1c in poorly controlled type 1 diabetic patients. RESEARCH DESIGN AND METHODS In a six-month open-label parallel-group, multicenter study, adult patients (n = 180) with type 1 diabetes (>1 year), on a basal-bolus insulin regimen (>6 months), with HbA1c ≥8%, were randomized to usual quarterly follow-up (G1), home use of a smartphone recommending insulin doses with quarterly visits (G2), or use of the smartphone with short teleconsultations every 2 weeks but no visit until point end (G3). RESULTS Six-month mean HbA1c in G3 (8.41 ± 1.04%) was lower than in G1 (9.10 ± 1.16%; P = 0.0019). G2 displayed intermediate results (8.63 ± 1.07%). The Diabeo system gave a 0.91% (0.60; 1.21) improvement in HbA1c over controls and a 0.67% (0.35; 0.99) reduction when used without teleconsultation. There was no difference in the frequency of hypoglycemic episodes or in medical time spent for hospital or telephone consultations. However, patients in G1 and G2 spent nearly 5 h more than G3 patients attending hospital visits. CONCLUSIONS The Diabeo system gives a substantial improvement to metabolic control in chronic, poorly controlled type 1 diabetic patients without requiring more medical time and at a lower overall cost for the patient than usual care.
Diabetes Care | 2014
Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Lloyd B. Mize; Anne Farret; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Federico Boscari; Silvia Galasso; Angelo Avogaro; Lalo Magni; Federico Di Palma; Chiara Toffanin; Mirko Messori; Eyal Dassau; Francis J. Doyle
OBJECTIVE We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)—a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS The primary outcome—reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)—resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9–10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.
Journal of diabetes science and technology | 2009
Daniela Bruttomesso; Anne Farret; Silvana Costa; Maria Cristina Marescotti; Monica Vettore; Angelo Avogaro; Antonio Tiengo; Chiara Dalla Man; Jerome Place; Andrea Facchinetti; Stefania Guerra; Lalo Magni; Giuseppe De Nicolao; Claudio Cobelli; Eric Renard; Alberto Maran
New effort has been made to develop closed-loop glucose control, using subcutaneous (SC) glucose sensing and continuous subcutaneous insulin infusion (CSII) from a pump, and a control algorithm. An approach based on a model predictive control (MPC) algorithm has been utilized during closed-loop control in type 1 diabetes patients. Here we describe the preliminary clinical experience with this approach. In Padova, two out of three subjects showed better performance with the closed-loop system compared to open loop. Altogether, mean overnight plasma glucose (PG) levels were 134 versus 111 mg/dl during open loop versus closed loop, respectively. The percentage of time spent at PG > 140 mg/dl was 45% versus 12%, while postbreakfast mean PG was 165 versus 156 mg/dl during open loop versus closed loop, respectively. Also, in Montpellier, two patients out of three showed a better glucose control during closed-loop trials. Avoidance of nocturnal hypoglycemic excursions was a clear benefit during algorithm-guided insulin delivery in all cases. This preliminary set of studies demonstrates that closed-loop control based entirely on SC glucose sensing and insulin delivery is feasible and can be applied to improve glucose control in patients with type 1 diabetes, although the algorithm needs to be further improved to achieve better glycemic control. Six type 1 diabetes patients (three in each of two clinical investigation centers in Padova and Montpellier), using CSII, aged 36 ± 8 and 48 ± 6 years, duration of diabetes 12 ± 8 and 29 ± 4 years, hemoglobin A1c 7.4% ± 0.1% and 7.3% ± 0.3%, body mass index 23.2 ± 0.3 and 28.4 ± 2.2 kg/m2, respectively, were studied on two occasions during 22 h overnight hospital admissions 2–4 weeks apart. A Freestyle Navigator® continuous glucose monitor and an OmniPod® insulin pump were applied in each trial. Admission 1 used open-loop control, while admission 2 employed closed-loop control using our MPC algorithm.
Diabetes Care | 2013
Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Anne Farret; Marie-Josée Pelletier; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Roberto Visentin; Alessio Filippi; Rachele Scotton; Angelo Avogaro; Francis J. Doyle
OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
The Lancet Diabetes & Endocrinology | 2015
Jort Kropff; Simone Del Favero; Jerome Place; Chiara Toffanin; Roberto Visentin; Marco Monaro; Mirko Messori; Federico Di Palma; Giordano Lanzola; Anne Farret; Federico Boscari; Silvia Galasso; Paolo Magni; Angelo Avogaro; Patrick Keith-Hynes; Boris P. Kovatchev; Daniela Bruttomesso; Claudio Cobelli; J. Hans DeVries; Eric Renard; Lalo Magni
BACKGROUND An artificial pancreas (AP) that can be worn at home from dinner to waking up in the morning might be safe and efficient for first routine use in patients with type 1 diabetes. We assessed the effect on glucose control with use of an AP during the evening and night plus patient-managed sensor-augmented pump therapy (SAP) during the day, versus 24 h use of patient-managed SAP only, in free-living conditions. METHODS In a crossover study done in medical centres in France, Italy, and the Netherlands, patients aged 18-69 years with type 1 diabetes who used insulin pumps for continuous subcutaneous insulin infusion were randomly assigned to 2 months of AP use from dinner to waking up plus SAP use during the day versus 2 months of SAP use only under free-living conditions. Randomisation was achieved with a computer-generated allocation sequence with random block sizes of two, four, or six, masked to the investigator. Patients and investigators were not masked to the type of intervention. The AP consisted of a continuous glucose monitor (CGM) and insulin pump connected to a modified smartphone with a model predictive control algorithm. The primary endpoint was the percentage of time spent in the target glucose concentration range (3·9-10·0 mmol/L) from 2000 to 0800 h. CGM data for weeks 3-8 of the interventions were analysed on a modified intention-to-treat basis including patients who completed at least 6 weeks of each intervention period. The 2 month study period also allowed us to asses HbA1c as one of the secondary outcomes. This trial is registered with ClinicalTrials.gov, number NCT02153190. FINDINGS During 2000-0800 h, the mean time spent in the target range was higher with AP than with SAP use: 66·7% versus 58·1% (paired difference 8·6% [95% CI 5·8 to 11·4], p<0·0001), through a reduction in both mean time spent in hyperglycaemia (glucose concentration >10·0 mmol/L; 31·6% vs 38·5%; -6·9% [-9·8% to -3·9], p<0·0001) and in hypoglycaemia (glucose concentration <3·9 mmol/L; 1·7% vs 3·0%; -1·6% [-2·3 to -1·0], p<0·0001). Decrease in mean HbA1c during the AP period was significantly greater than during the control period (-0·3% vs -0·2%; paired difference -0·2 [95% CI -0·4 to -0·0], p=0·047), taking a period effect into account (p=0·0034). No serious adverse events occurred during this study, and none of the mild-to-moderate adverse events was related to the study intervention. INTERPRETATION Our results support the use of AP at home as a safe and beneficial option for patients with type 1 diabetes. The HbA1c results are encouraging but preliminary. FUNDING European Commission.
Diabetes Care | 2012
Claudio Cobelli; Eric Renard; Boris P. Kovatchev; Patrick Keith-Hynes; Najib Ben Brahim; Jerome Place; Simone Del Favero; Marc D. Breton; Anne Farret; Daniela Bruttomesso; Eyal Dassau; Howard Zisser; Francis J. Doyle; Stephen D. Patek; Angelo Avogaro
The artificial pancreas (AP) has been tested extensively in the hospital setting (1–5). Here we describe a next logical step in AP development—the first outpatient trials of a wearable AP based on a smartphone computational platform. Following Ethical Committee approvals and ClinicalTrials.gov registration (NCT01447992 and NCT01447979), two simultaneous studies were conducted in Padova, Italy, and Montpellier, France, in October 2011, enrolling a 38-year-old female and a 52-year-old male, respectively; both were Caucasian, type 1 diabetic insulin pump users. Day 1—At 17:00, the patients arrived at hotels located within 1 km from the emergency room. Subjects’ pumps were replaced by Omnipod Insulin Management Systems. The APs were activated in open-loop mode implementing the patients’ regular routines and remote monitoring was initiated. At 20:00, the patients had dinner at a local restaurant, without dietary restrictions and then spent the night in the hotel. Day 2—At 7:00, the patients were admitted to the clinic and the APs were switched to automated closed-loop control and challenged by breakfast at 8:00 and lunch at 12:00. At 18:00, the patients moved back to the hotel; dinner was at 20:00 in a local restaurant, without dietary restrictions. Meal bolus was recommended by the APs and approved by the patients; …
Diabetes, Obesity and Metabolism | 2015
Jort Kropff; Daniela Bruttomesso; W. Doll; Anne Farret; Silvia Galasso; Yoeri M. Luijf; Julia K. Mader; Jerome Place; Federico Boscari; Thomas R. Pieber; Eric Renard; J. H. DeVries
To assess the accuracy and reliability of the two most widely used continuous glucose monitoring (CGM) systems.
Diabetes Care | 2013
Yoeri M. Luijf; J. Hans DeVries; Koos H. Zwinderman; Lalantha Leelarathna; Marianna Nodale; Karen Caldwell; Kavita Kumareswaran; Daniela Elleri; Janet M. Allen; Malgorzata E. Wilinska; Mark L. Evans; Roman Hovorka; Werner Doll; Martin Ellmerer; Julia K. Mader; Eric Renard; Jerome Place; Anne Farret; Claudio Cobelli; Simone Del Favero; Chiara Dalla Man; Angelo Avogaro; Daniela Bruttomesso; Alessio Filippi; Rachele Scotton; Lalo Magni; Giordano Lanzola; Federico Di Palma; Paola Soru; Chiara Toffanin
OBJECTIVE To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS Both CAM and iAP algorithms provide safe glycemic control.