Anthony Schwacha
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Schwacha.
Microbiology and Molecular Biology Reviews | 2009
Matthew L. Bochman; Anthony Schwacha
SUMMARY The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Molecular Cell | 2001
Anthony Schwacha; Stephen P. Bell
The six MCM (minichromosome maintenance) proteins are essential DNA replication factors that each contain a putative ATP binding motif and together form a heterohexameric complex. We show that these motifs are required for viability in vivo and coordinated ATP hydrolysis in vitro. Mutational analysis discriminates between two functionally distinct MCM protein subgroups: Mcm4p, 6p, and 7p contribute canonical ATP binding motifs essential for catalysis, whereas the related motifs in Mcm2p, 3p, and 5p serve a regulatory function. Reconstitution experiments indicate that specific functional interactions between these two subgroups are required for robust ATP hydrolysis. Our observations show parallels between the MCM complex and the F1-ATPase, and we discuss how ATP hydrolysis by the MCM complex might be coupled to DNA strand separation.
Molecular and Cellular Biology | 2008
Matthew L. Bochman; Stephen P. Bell; Anthony Schwacha
ABSTRACT The Mcm2-7 (minichromosome maintenance) complex is a toroidal AAA+ ATPase and the putative eukaryotic replicative helicase. Unlike a typical homohexameric helicase, Mcm2-7 contains six distinct, essential, and evolutionarily conserved subunits. Precedence to other AAA+ proteins suggests that Mcm ATPase active sites are formed combinatorially, with Walker A and B motifs contributed by one subunit and a catalytically essential arginine (arginine finger) contributed by the adjacent subunit. To test this prediction, we used copurification experiments to identify five distinct and stable Mcm dimer combinations as potential active sites; these subunit associations predict the architecture of the Mcm2-7 complex. Through the use of mutant subunits, we establish that at least three sites are active for ATP hydrolysis and have a canonical AAA+ configuration. In isolation, these five active-site dimers have a wide range of ATPase activities. Using Walker B and arginine finger mutations in defined Mcm subunits, we demonstrate that these sites similarly make differential contributions toward viability and ATP hydrolysis within the intact hexamer. Our conclusions predict a structural discontinuity between Mcm2 and Mcm5 and demonstrate that in contrast to other hexameric helicases, the six Mcm2-7 active sites are functionally distinct.
Journal of Biological Chemistry | 2007
Matthew L. Bochman; Anthony Schwacha
The MCM2-7 complex, a hexamer containing six distinct and essential subunits, is postulated to be the eukaryotic replicative DNA helicase. Although all six subunits function at the replication fork, only a specific subcomplex consisting of the MCM4, 6, and 7 subunits (MCM467) and not the MCM2-7 complex exhibits DNA helicase activity in vitro. To understand why MCM2-7 lacks helicase activity and to address the possible function of the MCM2, 3, and 5 subunits, we have compared the biochemical properties of the Saccharomyces cerevisiae MCM2-7 and MCM467 complexes. We demonstrate that both complexes are toroidal and possess a similar ATP-dependent single-stranded DNA (ssDNA) binding activity, indicating that the lack of helicase activity by MCM2-7 is not due to ineffective ssDNA binding. We identify two important differences between them. MCM467 binds dsDNA better than MCM2-7. In addition, we find that the rate of MCM2-7/ssDNA association is slow compared with MCM467; the association rate can be dramatically increased either by preincubation with ATP or by inclusion of mutations that ablate the MCM2/5 active site. We propose that the DNA binding differences between MCM2-7 and MCM467 correspond to a conformational change at the MCM2/5 active site with putative regulatory significance.
Nucleic Acids Research | 2010
Matthew L. Bochman; Anthony Schwacha
The Mcm2-7 complex is the eukaryotic replicative helicase, a toroidal AAA+ molecular motor that uses adenosine triphosphate (ATP) binding and hydrolysis to separate duplex DNA strands during replication. This heterohexameric helicase contains six different and essential subunits (Mcm2 through Mcm7), with the corresponding dimer interfaces forming ATPase active sites from conserved motifs of adjacent subunits. As all other known hexameric helicases are formed from six identical subunits, the function of the unique heterohexameric organization of Mcm2-7 is of particular interest. Indeed, prior work using mutations in the conserved Walker A box ATPase structural motif strongly suggests that individual ATPase active sites contribute differentially to Mcm2-7 activity. Although only a specific subset of active sites is required for helicase activity, another ATPase active site (Mcm2/5) may serve as a reversible ATP-dependent discontinuity (‘gate’) within the hexameric ring structure. This study analyzes the contribution that two other structural motifs, the Walker B box and arginine finger, make to each Mcm2-7 ATPase active site. Mutational analysis of these motifs not only confirms that Mcm ATPase active sites contribute unequally to activity but implicates the involvement of at least two additional active sites (Mcm5/3 and 6/2) in modulating the activity of the putative Mcm2/5 gate.
Sub-cellular biochemistry | 2012
Sriram Vijayraghavan; Anthony Schwacha
In eukaryotes, the Mcm2-7 complex forms the core of the replicative helicase - the molecular motor that uses ATP binding and hydrolysis to fuel the unwinding of double-stranded DNA at the replication fork. Although it is a toroidal hexameric helicase superficially resembling better-studied homohexameric helicases from prokaryotes and viruses, Mcm2-7 is the only known helicase formed from six unique and essential subunits. Recent biochemical and structural analyses of both Mcm2-7 and a higher-order complex containing additional activator proteins (the CMG complex) shed light on the reason behind this unique subunit assembly: whereas only a limited number of specific ATPase active sites are needed for DNA unwinding, one particular ATPase active site has evolved to form a reversible discontinuity (gate) in the toroidal complex. The activation of Mcm2-7 helicase during S-phase requires physical association of the accessory proteins Cdc45 and GINS; structural data suggest that these accessory factors activate DNA unwinding through closure of the Mcm2-7 gate. Moreover, studies capitalizing on advances in the biochemical reconstitution of eukaryotic DNA replication demonstrate that Mcm2-7 loads onto origins during initiation as a double hexamer, yet does not act as a double-stranded DNA pump during elongation.
BioMed Research International | 2014
Nicholas E. Simon; Anthony Schwacha
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
PLOS Genetics | 2016
Sriram Vijayraghavan; Feng-Ling Tsai; Anthony Schwacha
The Mcm2-7 complex is the catalytic core of the eukaryotic replicative helicase. Here, we identify a new role for this complex in maintaining genome integrity. Using both genetic and cytological approaches, we find that a specific mcm allele (mcm2DENQ) causes elevated genome instability that correlates with the appearance of numerous DNA-damage associated foci of γH2AX and Rad52. We further find that the triggering events for this genome instability are elevated levels of RNA:DNA hybrids and an altered DNA topological state, as over-expression of either RNaseH (an enzyme specific for degradation of RNA in RNA:DNA hybrids) or Topoisomerase 1 (an enzyme that relieves DNA supercoiling) can suppress the mcm2DENQ DNA-damage phenotype. Moreover, the observed DNA damage has several additional unusual properties, in that DNA damage foci appear only after S-phase, in G2/M, and are dependent upon progression into metaphase. In addition, we show that the resultant DNA damage is not due to spontaneous S-phase fork collapse. In total, these unusual mcm2DENQ phenotypes are markedly similar to those of a special previously-studied allele of the checkpoint sensor kinase ATR/MEC1, suggesting a possible regulatory interplay between Mcm2-7 and ATR during unchallenged growth. As RNA:DNA hybrids primarily result from transcription perturbations, we suggest that surveillance-mediated modulation of the Mcm2-7 activity plays an important role in preventing catastrophic conflicts between replication forks and transcription complexes. Possible relationships among these effects and the recently discovered role of Mcm2-7 in the DNA replication checkpoint induced by HU treatment are discussed.
Bioscience Reports | 2013
Nicholas W. Simon; Matthew L. Bochman; Sandlin P. Seguin; Jeffrey L. Brodsky; William Seibel; Anthony Schwacha
Most currently available small molecule inhibitors of DNA replication lack enzymatic specificity, resulting in deleterious side effects during use in cancer chemotherapy and limited experimental usefulness as mechanistic tools to study DNA replication. Towards development of targeted replication inhibitors, we have focused on Mcm2-7 (minichromosome maintenance protein 2–7), a highly conserved helicase and key regulatory component of eukaryotic DNA replication. Unexpectedly we found that the fluoroquinolone antibiotic ciprofloxacin preferentially inhibits Mcm2-7. Ciprofloxacin blocks the DNA helicase activity of Mcm2-7 at concentrations that have little effect on other tested helicases and prevents the proliferation of both yeast and human cells at concentrations similar to those that inhibit DNA unwinding. Moreover, a previously characterized mcm mutant (mcm4chaos3) exhibits increased ciprofloxacin resistance. To identify more potent Mcm2-7 inhibitors, we screened molecules that are structurally related to ciprofloxacin and identified several that compromise the Mcm2-7 helicase activity at lower concentrations. Our results indicate that ciprofloxacin targets Mcm2-7 in vitro, and support the feasibility of developing specific quinolone-based inhibitors of Mcm2-7 for therapeutic and experimental applications.
Nature | 2015
Matthew L. Bochman; Anthony Schwacha
The DNA double helix must be separated into single strands to be duplicated. A structure of the Mcm2–7 helicase enzyme responsible for this activity yields unprecedented insight into how the process is initiated. See Article p.186 In eukaryotes, DNA replication begins with the binding of a hexameric ring of minichromosome maintenance (MCM) proteins at regions known as replication origins during the G1 phase of the cell cycle. The resulting complex is dormant until the cell enters S phase, when replication occurs. This entails conversion of an MCM double hexamer into an active species, but the structure of this complex was unknown. Ning Gao and colleagues have used cryo-electron microscopy to visualize the double hexamer complex. They observe two interdigitated hexamers that have a central channel that tightly fits a DNA duplex. The orientation of the single rings suggests models in which relative movements between the two hexamers would deform the origin DNA so that other replication proteins can bind to the melted DNA double helix.