Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonia Patsialou is active.

Publication


Featured researches published by Antonia Patsialou.


Nature Reviews Cancer | 2011

Chemotaxis in cancer

Evanthia T. Roussos; John Condeelis; Antonia Patsialou

Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

Huiping Liu; Manishkumar Patel; Jennifer A. Prescher; Antonia Patsialou; Dalong Qian; Jiahui Lin; Susanna Wen; Ya Fang Chang; Michael H. Bachmann; Yohei Shimono; Piero Dalerba; Maddalena Adorno; Neethan Lobo; Janet Bueno; Frederick M. Dirbas; Sumanta Goswami; George Somlo; John Condeelis; Christopher H. Contag; Sanjiv S. Gambhir; Michael F. Clarke

To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy.


Cancer Research | 2009

Invasion of Human Breast Cancer Cells In vivo Requires Both Paracrine and Autocrine Loops Involving the Colony-Stimulating Factor-1 Receptor

Antonia Patsialou; Jeffrey Wyckoff; Yarong Wang; Sumanta Goswami; E. Richard Stanley; John Condeelis

Colony-stimulating factor-1 (CSF-1) and its receptor (CSF-1R) have been implicated in the pathogenesis and progression of various types of cancer, including breast cancer. This is based on high levels of circulating CSF-1 in patient sera with aggressive disease and increased CSF-1R staining in the tumor tissues. However, there have been no direct in vivo studies to determine whether a CSF-1 autocrine signaling loop functions in human breast cancer cells in vivo and whether it contributes to invasion. Recently, in mouse and rat models, it has been shown that invasion and metastasis are driven by an epidermal growth factor (EGF)/CSF-1 paracrine loop between tumor cells and host macrophages. In this macrophage-dependent invasion, tumor cells secrete CSF-1 and sense EGF, whereas the macrophages secrete EGF and sense CSF-1. Here, we test the hypothesis that in human breast tumors, the expression of both the CSF-1 ligand and its receptor in tumor cells leads to a CSF-1/CSF-1R autocrine loop which contributes to the aggressive phenotype of human breast tumors. Using MDA-MB-231 cell-derived mammary tumors in severe combined immunodeficiency mice, we show here for the first time in vivo that invasion in a human mammary tumor model is dependent on both paracrine signaling with host macrophages as well as autocrine signaling involving the tumor cells themselves. In particular, we show that the autocrine contribution to invasion is specifically amplified in vivo through a tumor microenvironment-induced upregulation of CSF-1R expression via the transforming growth factor-beta1.


Oncogene | 2014

Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation

Minna Roh-Johnson; Jose Javier Bravo-Cordero; Antonia Patsialou; Ved P. Sharma; Peng Guo; Huiping Liu; Louis Hodgson; John Condeelis

Most cancer patients die as a result of metastasis, thus it is important to understand the molecular mechanisms of dissemination, including intra- and extravasation. Although the mechanisms of extravasation have been vastly studied in vitro and in vivo, the process of intravasation is still unclear. Furthermore, how cells in the tumor microenvironment facilitate tumor cell intravasation is still unknown. Using high-resolution imaging, we found that macrophages enhance tumor cell intravasation upon physical contact. Macrophage and tumor cell contact induce RhoA activity in tumor cells, triggering the formation of actin-rich degradative protrusions called invadopodia, enabling tumor cells to degrade and break through matrix barriers during tumor cell transendothelial migration. Interestingly, we show that macrophage-induced invadopodium formation and tumor cell intravasation also occur in patient-derived tumor cells and in vivo models, revealing a conserved mechanism of tumor cell intravasation. Our results illustrate a novel heterotypic cell contact-mediated signaling role for RhoA, as well as yield mechanistic insight into the ability of cells within the tumor microenvironment to facilitate steps of the metastatic cascade.


IntraVital | 2013

Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

Antonia Patsialou; Jose Javier Bravo-Cordero; Yarong Wang; David Entenberg; Huiping Liu; Michael F. Clarke; John Condeelis

Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: (1) single cells and (2) multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor.


Breast Cancer Research | 2012

Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients

Antonia Patsialou; Yarong Wang; Juan Lin; Kathleen Whitney; Sumanta Goswami; Paraic A. Kenny; John Condeelis

IntroductionMetastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation.MethodsIn the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS).ResultsUnsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters.ConclusionsOur data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.


Oncogene | 2013

Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo

Hava Gil-Henn; Antonia Patsialou; Yarong Wang; Michael Sloan Warren; John Condeelis; Anthony J. Koleske

Tumor progression is a complex, multistep process involving accumulation of genetic aberrations and alterations in gene expression patterns leading to uncontrolled cell division, invasion into surrounding tissue and finally dissemination and metastasis. We have previously shown that the Arg/Abl2 non-receptor tyrosine kinase acts downstream of the EGF receptor and Src tyrosine kinases to promote invadopodium function in breast cancer cells, thereby promoting their invasiveness. However, whether and how Arg contributes to tumor development and dissemination in vivo has never been investigated. Using a mouse xenograft model, we show that knocking down Arg in breast cancer cells leads to increased tumor cell proliferation and significantly enlarged tumor size. Despite having larger tumors, the Arg-knockdown (Arg KD) tumor-bearing mice exhibit significant reductions in tumor cell invasion, intravasation into blood vessels and spontaneous metastasis to lungs. Interestingly, we found that proliferation-associated genes in the Ras-MAPK (mitogen-activated protein kinase) pathway are upregulated in Arg KD breast cancer cells, as is Ras-MAPK signaling, while invasion-associated genes are significantly downregulated. These data suggest that Arg promotes tumor cell invasion and dissemination, while simultaneously inhibiting tumor growth. We propose that Arg acts as a switch in metastatic cancer cells that governs the decision to ‘grow or go’ (divide or invade).


Cancer Research | 2009

Differential Enhancement of Breast Cancer Cell Motility and Metastasis by Helical and Kinase Domain Mutations of Class IA Phosphoinositide 3-Kinase

Huan Pang; Rory J. Flinn; Antonia Patsialou; Jeffrey Wyckoff; Evanthia T. Roussos; Haiyan Wu; Maria Pozzuto; Sumanta Goswami; John Condeelis; Anne R. Bresnick; Jeffrey E. Segall; Jonathan M. Backer

Class IA (p85/p110) phosphoinositide 3-kinases play a major role in regulating cell growth, survival, and motility. Activating mutations in the p110alpha isoform of the class IA catalytic subunit (PIK3CA) are commonly found in human cancers. These mutations lead to increased proliferation and transformation in cultured cells, but their effects on cell motility and tumor metastasis have not been evaluated. We used lentiviral-mediated gene transfer and knockdown to produce stable MDA-MB-231 cells in which the endogenous human p110alpha is replaced with either wild-type bovine p110alpha or the two most common activating p110alpha mutants, the helical domain mutant E545K and the kinase domain mutant H1047R. The phosphoinositide 3-kinase/Akt pathway was hyperactivated in cells expressing physiologic levels of helical or kinase domain mutants. Cells expressing either mutant showed increased motility in vitro, but only cells expressing the helical domain mutant showed increased directionality in a chemotaxis assay. In severe combined immunodeficient mice, xenograft tumors expressing either mutant showed increased rates of tumor growth compared with tumors expressing wild-type p110alpha. However, tumors expressing the p110alpha helical domain mutant showed a marked increase in both tumor cell intravasation into the blood and tumor cell extravasation into the lung after tail vein injection compared with tumors expressing wild-type p110alpha or the kinase domain mutant. Our observations suggest that, when compared with kinase domain mutations in a genetically identical background, expression of helical domain mutants of p110alpha produce a more severe metastatic phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells

Sonja C. Stadler; C. Theresa Vincent; Victor D. Fedorov; Antonia Patsialou; Brian D. Cherrington; Joseph J. Wakshlag; Sunish Mohanan; Barry M. Zee; Xuesen Zhang; Benjamin A. Garcia; John Condeelis; Anthony M. C. Brown; C. David Allis

Peptidylarginine deiminase 4 (PAD4) is a Ca2+-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo. Among other functions, GSK3β is a key regulator of transcription factors involved in tumor progression, and its dysregulation has been associated with progression of human cancers. We demonstrate that silencing of PAD4 in breast cancer cells leads to a striking reduction of nuclear GSK3β protein levels, increased TGF-β signaling, induction of epithelial-to-mesenchymal transition, and production of more invasive tumors in xenograft assays. Moreover, in breast cancer patients, reduction of PAD4 and nuclear GSK3β is associated with increased tumor invasiveness. We propose that PAD4-mediated citrullination of GSK3β is a unique posttranslational modification that regulates its nuclear localization and thereby plays a critical role in maintaining an epithelial phenotype. We demonstrate a dynamic and previously unappreciated interplay between histone-modifying enzymes, citrullination of nonhistone proteins, and epithelial-to-mesenchymal transition.


Journal of Microscopy | 2013

Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro

Athanassios Dovas; Antonia Patsialou; Allison S. Harney; John Condeelis; Dianne Cox

Tumour‐associated macrophages participate in several protumour functions including tumour growth and angiogenesis, and facilitate almost every step of the metastatic cascade. Interfering with macrophage functions may therefore provide an important strategy in the clinical management of cancer and metastatic disease. Our understanding of macrophage functions has been greatly expanded by direct observations of macrophage–carcinoma cell interactions using light microscopy. Imaging approaches include intravital microscopy of tumours in mouse models of cancer and visualization of macrophage–carcinoma cell interactions in in vitro assays; whether atop 2D substrates, embedded in 3D matrices or in more complex assemblies of multiple cell types that mimic specific topologies of the tumour microenvironment. Such imaging and reconstitution approaches have provided us with a wealth of information on the motile behaviour and physical associations between macrophages and carcinoma cells and the role of the tumour microenvironment in influencing the movement of these cells. Finally, high‐resolution imaging techniques have permitted researchers to correlate motility patterns with specific gene signatures and biochemical pathways in cells, pointing to potential targets for intervention. Here, we review experimental approaches employed in the study of macrophage interactions with carcinoma cells with an emphasis on imaging invasive and metastatic cell motility in breast carcinomas.

Collaboration


Dive into the Antonia Patsialou's collaboration.

Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yarong Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiping Liu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Entenberg

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wyckoff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jose Javier Bravo-Cordero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Allison S. Harney

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge