Anu Agarwal
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anu Agarwal.
Optics Express | 2007
Juejun Hu; Vladimir Tarasov; Anu Agarwal; Lionel C. Kimerling; Nathan Carlie; Laeticia Petit; Kathleen Richardson
We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge(23)Sb(7)S(70) glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF(6) plasma etching. Microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover completed the device fabrication. The chalcogenide waveguides yield a transmission loss of 2.3 dB/cm at 1550 nm. We show in this letter that using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations. From our experiments, a sensitivity of this sensor down to a N-methylaniline concentration 0.7 vol. % is expected. Given the low-cost fabrication process used, and robust device configuration, our integration scheme provides a promising device platform for chemical sensing applications.
Optics Express | 2007
Juejun Hu; Vladimir Tarasov; Nathan Carlie; Ning-Ning Feng; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
We demonstrate, for the first time to the best of our knowledge, low-loss, Si-CMOS-compatible fabrication of single-mode chalcogenide strip waveguides. As a novel route of chalcogenide glass film patterning, lift-off allows several benefits: leverage with Si-CMOS process compatibility; ability to fabricate single-mode waveguides with core sizes down to submicron range; and reduced sidewall roughness. High-index-contrast Ge(23)Sb(7)S(70) strip waveguides have been fabricated using lift-off with excellent uniformity of loss propagation and the lowest loss figure of reported to date. We also show that small core Ge(23)Sb(7)S(70) rib waveguides can be fabricated via lift-off as well, with loss figures lower than 0.5 dB/cm. Additionally, we find through waveguide modal analysis that although overall transmission loss is low, the predominant source of this loss comes from scattering at the sidewalls.
Optics Letters | 2008
Juejun Hu; Nathan Carlie; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As(2)S(3) films. The device simultaneously features a small footprint of 0.012 mm x 0.012 mm, a cavity Q (quality factor) of 10,000, and an extinction ratio of 32 dB. These resonators exhibit a very high sensitivity to refractive index changes with a demonstrated detection capability of Dn(As(2)S(3)=(4.5 x 10(-6)+/-10%) refractive index unit. The resonators were applied to derive a photorefractive response of As(2)S(3) to lambda=550 nm light. The resonator devices are a versatile platform for both sensing and glass material property investigation.
Optics Express | 2010
Juejun Hu; Ning-Ning Feng; Nathan Carlie; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
A thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As(2)S(3) chalcogenide glass to reduce the sidewall roughness and associated optical scattering loss. We show that the reflow process effectively decreases sidewall roughness of chalcogenide glass waveguides. A kinetic model is presented to quantitatively explain the sidewall roughness evolution during thermal reflow. Further, we develop a technique to calculate waveguide optical loss using the roughness evolution model, and predict the ultimate low loss limit in reflowed high-index-contrast glass waveguides. Up to 50% optical loss reduction after reflow treatment is experimentally observed, and the practical loss limiting factors are discussed.
Journal of Lightwave Technology | 2009
Juejun Hu; Nathan Carlie; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
Planar microdisk optical resonators fabricated from Ge23Sb7S70 chalcogenide glass on a silicon substrate are applied for cavity-enhanced spectroscopic measurement of chemical molecular absorption fingerprint. A 0.02 cm- 1 detection limit for these devices is demonstrated. This detection limit represents a threefold improvement as compared to a straight waveguide sensor, while the physical device length is reduced by 40-fold. The reduction in device footprint with enhanced sensitivity makes the structure attractive for ldquosensor-on-a-chiprdquo device applications. We also present a design optimization approach for cavity-enhanced IR absorption spectroscopy using traveling-wave resonators, which indicates that further performance improvement can be achieved in optimally coupled, low-loss resonant cavities.
Optics Express | 2007
Juejun Hu; Ning-Ning Feng; Nathan Carlie; Laeticia Petit; Jianfei Wang; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
We experimentally demonstrate, for the first time, propagation loss reduction via graded-index (GRIN) cladding layers in high-index-contrast (HIC) glass waveguides. We show that scattering loss arising from sidewall roughness can be significantly reduced without compromising the high-index-contrast condition, by inserting thin GRIN cladding layers with refractive indices intermediate between the core and topmost cover of a strip waveguide. Loss as low as 1.5 dB/cm is achieved in small core (1.6 mum x 0.35 mum), high-index-contrast (Deltan = 1.37) arsenic-based sulfide strip waveguides. This GRIN cladding design is generally applicable to HIC waveguide systems such as Si/SiO2.
International Journal of Nanotechnology | 2009
Laeticia Petit; Nathan Carlie; Bodgan Zdyrko; Igor Luzinov; Kathleen Richardson; Juejun Hu; Anu Agarwal; Lionel C. Kimerling; Troy Anderson; Martin Richardson
This paper reviews ongoing progress in the design and fabrication of new, on-chip, low loss planar molecular sensors. We report the details of device design, material selection and manufacturing processes used to realise high-index-contrast (HIC), compact micro-disk resonators. These structures have been fabricated in thermally evaporated As- and Ge-based chalcogenide glass films with PDMS (polydimethylsiloxane) micro-fluidic channels using standard UV lithography. Discussed are findings that demonstrate that our novel chalcogenide-based micro-fluidic device can be used as highly sensitive refractive index sensors.
Proceedings of SPIE | 2007
Juejun Hu; Vladimir Tarasov; Nathan Carlie; Rong Sun; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
Chalcogenide glasses are an ideal material candidate for evanescent biochemical sensing due to their mid and far-infrared transparency. We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides. High-index-contrast channel waveguides have been defined using plasma etching in thermally evaporated Ge23Sb7S70 films, followed by microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover. Using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations and a sensitivity of this sensor down to N-methylaniline concentration of 0.7 vol. %. Thermal reflow has been employed as an effective method to smooth chalcogenide waveguide sidewall roughness from 6.1 nm to 0.56 nm. Given the low-cost fabrication process and robust device configuration, our integration scheme provides a promising device platform for infrared chemical sensing applications.
Proceedings of SPIE, the International Society for Optical Engineering | 2008
Juejun Hu; Nathan Carlie; Ning-Ning Feng; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling
We demonstrate Si-CMOS-compatible lift-off fabrication of chalcogenide glass waveguides monolithically integrated on a silicon platform. As a novel route of glass film patterning, lift-off allows several benefits: leverage with Si-CMOS process compatibility; ability to fabricate single-mode waveguides with core sizes down to submicron range; reduced sidewall roughness; and wide applicability to other non-silica glass compositions. High-index-contrast (HIC) single-mode strip waveguides have been fabricated with from several glass target compositions including Ge23Sb7S70, As2S3, As36Ge6S58, As36Sb6S58 and TeO2. We measured Ge-Sb-S waveguides with low loss and excellent wafer-scale uniformity. We have experimentally demonstrated propagation loss reduction via graded-index (GRIN) cladding layers in HIC glass waveguides. These efforts have shown that scattering loss arising from sidewall roughness can be significantly reduced without compromising the high-index-contrast condition by inserting thin GRIN cladding layers with refractive indices intermediate between the core and topmost cover of a strip waveguide.
Optical Materials | 2008
Juejun Hu; Vladimir Tarasov; Nathan Carlie; Laeticia Petit; Anu Agarwal; Kathleen Richardson; Lionel C. Kimerling