Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Appala Raju Badireddy is active.

Publication


Featured researches published by Appala Raju Badireddy.


Environmental Science & Technology | 2012

Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

Gregory V. Lowry; Benjamin Espinasse; Appala Raju Badireddy; Curtis J. Richardson; Brian C. Reinsch; Lee D. Bryant; Audrey J. Bone; Amrika Deonarine; So-Ryong Chae; Mathieu Therezien; Benjamin P. Colman; Heileen Hsu-Kim; Emily S. Bernhardt; Cole W. Matson; Mark R. Wiesner

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Aquatic Toxicology | 2010

Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans

Joel N. Meyer; Christopher A. Lord; Xinyu Y. Yang; Elena A. Turner; Appala Raju Badireddy; Stella M. Marinakos; Ashutosh Chilkoti; Mark R. Wiesner; Mélanie Auffan

Silver nanoparticles (AgNPs) are frequently used as antimicrobials. While the mechanism(s) by which AgNPs are toxic are unclear, their increasing use raises the concern that release into the environment could lead to environmental toxicity. We characterized the physicochemical behavior, uptake, toxicity (growth inhibition), and mechanism of toxicity of three AgNPs with different sizes and polyvinylpyrrolidone (PVP) or citrate coatings to the nematode Caenorhabditis elegans. We used wild-type (N2) C. elegans and strains expected to be sensitive to oxidative stress (nth-1, sod-2 and mev-1), genotoxins (xpa-1 and nth-1), and metals (mtl-2). Using traditional and novel analytical methods, we observed significant aggregation and extra-organismal dissolution of silver, organismal uptake and, in one case, transgenerational transfer of AgNPs. We also observed growth inhibition by all tested AgNPs at concentrations in the low mg/L levels. A metallothionein-deficient (mtl-2) strain was the only mutant tested that exhibited consistently greater AgNP sensitivity than wild-type. Although all tested AgNPs were internalized (passed cell membranes) in C. elegans, at least part of the toxicity observed was mediated by ionic silver. Finally, we describe a modified growth assay that permits differentiation between direct growth-inhibitory effects and indirect inhibition mediated by toxicity to the food source.


Environmental Science & Technology | 2013

Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli

Clément Levard; Sumit Mitra; Tiffany Yang; Adam D. Jew; Appala Raju Badireddy; Gregory V. Lowry; Gordon E. Brown

Pristine silver nanoparticles (AgNPs) are not chemically stable in the environment and react strongly with inorganic ligands such as sulfide and chloride once the silver is oxidized. Understanding the environmental transformations of AgNPs in the presence of specific inorganic ligands is crucial to determining their fate and toxicity in the environment. Chloride (Cl(-)) is a ubiquitous ligand with a strong affinity for oxidized silver and is often present in natural waters and in bacterial growth media. Though chloride can strongly affect toxicity results for AgNPs, their interaction is rarely considered and is challenging to study because of the numerous soluble and solid Ag-Cl species that can form depending on the Cl/Ag ratio. Consequently, little is known about the stability and dissolution kinetics of AgNPs in the presence of chloride ions. Our study focuses on the dissolution behavior of AgNPs in chloride-containing systems and also investigates the effect of chloride on the growth inhibition of E.coli (ATCC strain 33876) caused by Ag toxicity. Our results suggest that the kinetics of dissolution are strongly dependent on the Cl/Ag ratio and can be interpreted using the thermodynamically expected speciation of Ag in the presence of chloride. We also show that the toxicity of AgNPs to E.coli at various Cl(-) concentrations is governed by the amount of dissolved AgCl(x)((x-1)-) species suggesting an ion effect rather than a nanoparticle effect.


Environmental Health Perspectives | 2010

Silver Nanoparticles Compromise Neurodevelopment in PC12 Cells: Critical Contributions of Silver Ion, Particle Size, Coating, and Composition

Christina M. Powers; Appala Raju Badireddy; Ian T. Ryde; Frederic J. Seidler; Theodore A. Slotkin

Background Silver exposures are rising because of the increased use of silver nanoparticles (AgNPs) in consumer products. The monovalent silver ion (Ag+) impairs neurodevelopment in PC12 cells and zebrafish. Objectives and methods We compared the effects of AgNPs with Ag+ in PC12 cells for neurodevelopmental end points including cell replication, oxidative stress, cell viability, and differentiation. First, we compared citrate-coated AgNPs (AgNP-Cs) with Ag+, and then we assessed the roles of particle size, coating, and composition by comparing AgNP-C with two different sizes of polyvinylpyrrolidone-coated AgNPs (AgNP-PVPs) or silica nanoparticles. Results In undifferentiated cells, AgNP-C impaired DNA synthesis, but to a lesser extent than an equivalent nominal concentration of Ag+, whereas AgNP-C and Ag+ were equally effective against protein synthesis; there was little or no oxidative stress or loss of viability due to AgNP-C. In contrast, in differentiating cells, AgNP-C evoked robust oxidative stress and impaired differentiation into the acetylcholine phenotype. Although the effects of AgNP-PVP showed similarities to those of AgNP-C, we also found significant differences in potencies and differentiation outcomes that depended both on particle size and coating. None of the effects reflected simple physical attributes of nanoparticles, separate from composition or coating, as equivalent concentrations of silica nanoparticles had no detectable effects. Conclusions AgNP exposure impairs neurodevelopment in PC12 cells. Further, AgNP effects are distinct from those of Ag+ alone and depend on size and coating, indicating that AgNP effects are not due simply to the release of Ag+ into the surrounding environment.


Neurotoxicology and Teratology | 2011

Silver Nanoparticles Alter Zebrafish Development and Larval Behavior: Distinct Roles for Particle Size, Coating and Composition

Christina M. Powers; Theodore A. Slotkin; Frederic J. Seidler; Appala Raju Badireddy; Stephanie Padilla

Silver nanoparticles (AgNPs) act as antibacterials by releasing monovalent silver (Ag(+)) and are increasingly used in consumer products, thus elevating exposures in human and wildlife populations. In vitro models indicate that AgNPs are likely to be developmental neurotoxicants with actions distinct from those of Ag(+). We exposed developing zebrafish (Danio rerio) to Ag(+) or AgNPs on days 0-5 post-fertilization and evaluated hatching, morphology, survival and swim bladder inflation. Larval swimming behavior and responses to different lighting conditions were assessed 24h after the termination of exposure. Comparisons were made with AgNPs of different sizes and coatings: 10nm citrate-coated AgNP (AgNP-C), and 10 or 50nm polyvinylpyrrolidone-coated AgNPs (AgNP-PVP). Ag(+) and AgNP-C delayed hatching to a similar extent but Ag(+) was more effective in slowing swim bladder inflation, and elicited greater dysmorphology and mortality. In behavioral assessments, Ag(+) exposed fish were hyperresponsive to light changes, whereas AgNP-C exposed fish showed normal responses. Neither of the AgNP-PVPs affected survival or morphology but both evoked significant changes in swimming responses to light in ways that were distinct from Ag(+) and each other. The smaller AgNP-PVP caused overall hypoactivity whereas the larger caused hyperactivity. AgNPs are less potent than Ag(+) with respect to dysmorphology and loss of viability, but nevertheless produce neurobehavioral effects that highly depend on particle coating and size, rather than just reflecting the release of Ag(+). Different AgNP formulations are thus likely to produce distinct patterns of developmental neurotoxicity.


Environmental Science & Technology | 2014

Silver Nanoparticle Behavior, Uptake, and Toxicity in Caenorhabditis elegans: Effects of Natural Organic Matter

Xinyu Yang; Chuanjia Jiang; Heileen Hsu-Kim; Appala Raju Badireddy; Michael Dykstra; Mark R. Wiesner; David E. Hinton; Joel N. Meyer

Significant progress has been made in understanding the toxicity of silver nanoparticles (Ag NPs) under carefully controlled laboratory conditions. Natural organic matter (NOM) is omnipresent in complex environmental systems, where it may alter the behavior of nanoparticles in these systems. We exposed the nematode Caenorhabditis elegans to Ag NP suspensions with or without one of two kinds of NOM, Suwannee River and Pony Lake fulvic acids (SRFA and PLFA, respectively). PLFA rescued toxicity more effectively than SRFA. Measurement of total tissue silver content indicated that PLFA reduced total organismal (including digestive tract) uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs). The majority of the CIT-Ag NP uptake was in the digestive tract. Limited tissue uptake was detected by hyperspectral microscopy but not by transmission electron microscopy. Co-exposure to PLFA resulted in the formation of NOM-Ag NP composites (both in medium and in nematodes) and rescued AgNO3- and CIT-Ag NP-induced cellular damage, potentially by decreasing intracellular uptake of CIT-Ag NPs.


Aquatic Toxicology | 2012

Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials

Kevin W.H. Kwok; Mélanie Auffan; Appala Raju Badireddy; Clay M. Nelson; Mark R. Wiesner; Ashutosh Chilkoti; Jie Liu; Stella M. Marinakos; David E. Hinton

Silver nanoparticles (AgNPs) with antimicrobial properties are perhaps the most deployed engineered nanomaterials in consumer products. Almost all AgNPs are coated with organic materials to enhance their dispersion in water. Contributions of coatings to the toxicity of NPs have received little attention. Studies using AgNPs with one of three different coating materials (citrate (Cit), gum arabic (GA), and polyvinylpyrrolidone (PVP)) showed significantly different toxicity. GA AgNP proved to be the most toxic, while PVP and Cit AgNP exhibited similar and lower toxicity. However, all AgNPs were about three to ten times less toxic than AgNO(3) when their toxicities were compared on a mass-concentration basis. Evidence for NP-specific toxicity was observed with longer time for initiation of toxicity and increased incidence of resultant spinal flexure of medaka exposed to AgNPs, compared to AgNO(3). Hyperspectral imaging of 6 μm paraffin sections of fish exposed to AgNPs revealed AgNPs and their aggregates in tissues of fish. Gill distribution was ubiquitous, while small amounts were found in other organs, including the liver and brain. AgNPs were observed regularly in the gut lumen, but rarely in mural elements and mesentery. These results suggest that while ingestion was common, gills were the principal sites of AgNP uptake. In conclusion, AgNPs is a source of toxic Ag ions, while itself contribute partially to its toxicity to fish, and which interact with skin surface and were taken up via the gills.


Science of The Total Environment | 2013

Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag).

Christine Ogilvie Hendren; Appala Raju Badireddy; Elizabeth A. Casman; Mark R. Wiesner

Wastewater effluent and sewage sludge are predicted to be important release pathways for nanomaterials used in many consumer products. The uncertainty and variability of potential nanomaterial inputs, nanomaterial properties, and the operation of the wastewater treatment plant contribute to the difficulty of predicting sludge and effluent nanomaterial concentration. With a model parsimony approach, we developed a mass-balance representation of engineered nanomaterial (ENM) behavior based on a minimal number of input variables to describe release quantities to the environment. Our simulations show that significant differences in the removal of silver nanoparticles (nano-Ag) can be expected based on the type of engineered coatings used to stabilize these materials in suspension. At current production estimates, 95% of the estimated effluent concentrations of the nano-Ag considered to be least well-removed by the average wastewater treatment plant are calculated to fall below 0.12 μg/L, while 95% of the estimated sludge concentrations of nano-Ag with coatings that increase their likelihood of being present in biosolids, fall below 0.35 μg/L.


Environmental Science & Technology | 2012

Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy.

Appala Raju Badireddy; Mark R. Wiesner; Jie Liu

We introduce a novel methodology based on hyperspectral imagery with enhanced Darkfield microscopy for detection, characterization, and analysis of engineered nanoparticles in both ultrapure water and in complex waters, such as simulated-wetland ecosystem water and wastewater. Hyperspectral imagery analysis of 12 different nanoparticle sample types, scattering the obliquely incident visible and near-infrared light (VNIR: 400-1000 nm) in an enhanced Darkfield background, showed that the sample information in terms of the spatial distribution as well as spectral characteristics unique to each nanoparticle types, at a sensitivity of single nanoparticle (size ≥10 nm) can be obtained. Hyperspectral imagery and Raman spectral analyses of the silver nanoparticles (AgNPs) revealed that the apparent hydrodynamic size of the particle increased while the primary size remained unchanged in the presence of coatings, which is further confirmed by dynamic light scattering measurements. Similar in size, AgNPs with different coatings exhibited similar spectral color (or peak position) but a red-shift in the peak positions by same amount relative to Bare AgNPs was observed. In conclusion, hyperspectral imagery with enhanced Darkfield microscopy can be a promising tool for detection and characterization of engineered nanoparticles in environmental systems, facilitating studies on fate and transformation of these particles in various types of water samples.


ACS Nano | 2010

Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.

So-Ryong Chae; Appala Raju Badireddy; Jeffrey Farner Budarz; Shihong Lin; Yao Xiao; Mathieu Therezien; Mark R. Wiesner

Properties of nanomaterial suspensions are typically summarized by average values for the purposes of characterizing these materials and interpreting experimental results. We show in this work that the heterogeneity in aqueous suspensions of fullerene C(60) aggregates (nC(60)) must be taken into account for the purposes of predicting nanomaterial transport, exposure, and biological activity. The production of reactive oxygen species (ROS), microbial inactivation, and the mobility of the aggregates of the nC(60) in a silicate porous medium all increased as suspensions were fractionated to enrich with smaller aggregates by progressive membrane filtration. These size-dependent differences are attributed to an increasing degree of hydroxylation of nC(60) aggregates with decreasing size. As the quantity and influence of these more reactive fractions may increase with time, experiments evaluating fullerene transport and toxicity end points must take into account the evolution and heterogeneity of fullerene suspensions.

Collaboration


Dive into the Appala Raju Badireddy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

So-Ryong Chae

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina M. Powers

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge