Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnab Rai Choudhuri is active.

Publication


Featured researches published by Arnab Rai Choudhuri.


The Astrophysical Journal | 1987

The influence of the Coriolis force on flux tubes rising through the solar convection zone

Arnab Rai Choudhuri; Peter A. Gilman

In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones.


Astronomy and Astrophysics | 2004

Full-sphere simulations of a circulation-dominated solar dynamo: Exploring the parity issue

Piyali Chatterjee; Dibyendu Nandy; Arnab Rai Choudhuri

We explore a two-dimensional kinematic solar dynamo model in a full sphere, based on the helioseismically determined solar rotation profile and with an α effect concentrated near the solar surface, which captures the Babcock-Leighton idea that the poloidal field is created from the decay of tilted bipolar active regions. The meridional circulation, assumed to penetrate slightly below the tachocline, plays an important role. Some doubts have recently been raised regarding the ability of such a model to reproduce olar-like dipolar parity. We specifically address the parity issue and show that the dipolar mode is preferred when certain reasonable conditions are satisfied, the most important condition being the requirement that the poloidal field should diffuse efficiently to get coupled across the equator. Our model is shown to reproduce various aspects of observational data, including the phase relation between sunspots and the weak, diffuse field.


Monthly Notices of the Royal Astronomical Society | 2007

Solar activity forecast with a dynamo model

J. Jiang; Piyali Chatterjee; Arnab Rai Choudhuri

Although systematic measurements of the Sun’s polar magnetic field exist only from mid-1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock–Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high (of order 10 12 cm 2 s 1 ), we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid-latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.


The Astrophysical Journal | 1985

Force-free equilibria of magnetized jets

Arieh Koenigl; Arnab Rai Choudhuri

Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.


The Astrophysical Journal | 2001

Toward a Mean Field Formulation of the Babcock-Leighton Type Solar Dynamo. I. α-Coefficient versus Durney's Double-Ring Approach

Dibyendu Nandy; Arnab Rai Choudhuri

We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schussler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durneys procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.


The Astrophysical Journal | 2004

Helicity of Solar Active Regions from a Dynamo Model

Arnab Rai Choudhuri; Piyali Chatterjee; Dibyendu Nandy

We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock-Leighton α-effect to study how helicity varies with latitude and time.


Monthly Notices of the Royal Astronomical Society | 2010

The Waldmeier effect and the flux transport solar dynamo

Bidya Binay Karak; Arnab Rai Choudhuri

We confirm that the evidence for the Waldmeier effect WE1 (the anticorrelation between rise times of sunspot cycles and their strengths) and the related effect WE2 (the correlation between rise rates of cycles and their strengths) is found in different kinds of sunspot data. We explore whether these effects can be explained theoretically on the basis of the flux transport dynamo models of sunspot cycles. Two sources of irregularities of sunspot cycles are included in our model: fluctuations in the poloidal field generation process and fluctuations in the meridional circulation. We find WE2 to be a robust result which is produced in different kinds of theoretical models for different sources of irregularities. The Waldmeier effect WE1, on the other hand, arises from fluctuations in the meridional circulation and is found only in the theoretical models with reasonably high turbulent diffusivity which ensures that the diffusion time is not more than a few years.


Solar Physics | 1989

The evolution of loop structures in flux rings within the solar convection zone

Arnab Rai Choudhuri

Choudhuri and Gilman (1987) considered certain implications of the hypothesis that the magnetic flux within the Sun is generated at the bottom of the convection zone and then rises through it. Taking flux rings symmetric around the rotation axis and using reasonable values of different parameters, they found that the Coriolis force deflects these flux rings into trajectories parallel to the rotation axis so that they emerge at rather high latitudes. This paper looks into the question of whether the action of the Coriolis force is subdued when the initial configuration of the flux ring has non-axisymmetries in the form of loop structures. The results depend dramatically on whether the flux ring with the loops lies completely within the convection zone or whether the lower parts of it are embedded in the stable layers underneath the convection zone. In the first case, the Coriolis force supresses the non-axisymmetric perturbations so that the flux ring tends to remain symmetric and the trajectories are very similar to those of Choudhuri and Gilman (1987). In the second case, however, the lower parts of the flux ring may remain anchored underneath the bottom of the convection zone, but the upper parts of the loops still tend to move parallel to the rotation axis and emerge at high latitudes. Thus the problem of the magnetic flux not being able to come out at the sunspot latitudes still persists after the non-axisymmetries in the flux rings are taken into account.


Publications of the Astronomical Society of Japan | 2013

Can Superflares Occur on Our Sun

Kazunari Shibata; Hiroaki Isobe; Andrew Hillier; Arnab Rai Choudhuri; Hiroyuki Maehara; Takako T. Ishii; Takuya Shibayama; Shota Notsu; Yuta Notsu; Takashi Nagao; Satoshi Honda; Daisaku Nogami

Recent observations of solar type stars with the Kepler satellite by Maehara et al. have revealed the existence of superflares (with energy of 10^33 - 10^35 erg) on Sun-like stars, which are similar to our Sun in their surface temperature (5600 K - 6000 K) and slow rotation (rotational period > 10 days). From the statistical analysis of these superflares, it was found that superflares with energy 10^34 erg occur once in 800 years and superflares with 10^35 erg occur once in 5000 years on Sun-like stars. In this paper, we examine whether superflares with energy of 10^33 - 10^35 erg could occur on the present Sun through the use of simple order-of-magnitude estimates based on current ideas relating to the mechanisms of the solar dynamo.


The Astrophysical Journal | 1986

The dynamics of magnetically trapped fluids. I. Implications for umbral dots and penumbral grains

Arnab Rai Choudhuri

A study of the magnetohydrodynamic system in which a nonmagnetized fluid in a gravitational field is surrounded by a fluid carrying a vertical magnetic field is presented. It is pointed out that this study can throw some light on the fine-structural features of a sunspot. The equilibrium configuration of the field-free fluid is a tapering column ending at an apex. The regions away form the apex can be studied by the slender flux tube approximation. A scheme developed to treat the apex indicates that, just below the apex, the radius of the tapering column opens up with a 3/2 power dependence on the depth below the apex. If the internal pressure of the field-free fluid is increased, the apex rises, and a static equilibrium may not be possible beyond a limit if the magnetic pressure drops quickly above a certain height. The nature of steady-flow solutions beyond this limit is investigated. Under conditions inside a sunspot, a column of field-free gas is found to rise with a velocity of about 100 km/hr. If umbral dots and penumbral grains are interpreted as regions where the field-free gas ultimately emerges, a very natural explanation of most of their observed properties is obtained.

Collaboration


Dive into the Arnab Rai Choudhuri's collaboration.

Top Co-Authors

Avatar

Piyali Chatterjee

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Bidya Binay Karak

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mausumi Dikpati

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Gopal Hazra

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

J. Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dipankar Banerjee

Indian Institute of Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Sagar Chakraborty

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Sushan Konar

Inter-University Centre for Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Sydney D'Silva

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge