Athanasios S. Kallimanis
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athanasios S. Kallimanis.
Ecology Letters | 2008
Theodora Petanidou; Athanasios S. Kallimanis; Joseph Tzanopoulos; Stefanos P. Sgardelis; John D. Pantis
We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.
PLOS ONE | 2013
Antonios D. Mazaris; Alexandra D. Papanikolaou; Morgane Barbet-Massin; Athanasios S. Kallimanis; Frédéric Jiguet; Dirk S. Schmeller; John D. Pantis
Climate and land use changes are major threats to biodiversity. To preserve biodiversity, networks of protected areas have been established worldwide, like the Natura 2000 network across the European Union (EU). Currently, this reserve network consists of more than 26000 sites covering more than 17% of EU terrestrial territory. Its efficiency to mitigate the detrimental effects of land use and climate change remains an open research question. Here, we examined the potential current and future geographical ranges of four birds of prey under scenarios of both land use and climate changes. By using graph theory, we examined how the current Natura 2000 network will perform in regard to the conservation of these species. This approach determines the importance of a site in regard to the total network and its connectivity. We found that sites becoming unsuitable due to climate change are not a random sample of the network, but are less connected and contribute less to the overall connectivity than the average site and thus their loss does not disrupt the full network. Hence, the connectivity of the remaining network changed only slightly from present day conditions. Our findings highlight the need to establish species-specific management plans with flexible conservation strategies ensuring protection under potential future range expansions. Aquila pomarina is predicted to disappear from the southern part of its range and to become restricted to northeastern Europe. Gyps fulvus, Aquila chrysaetos, and Neophron percnopterus are predicted to locally lose some suitable sites; hence, some isolated small populations may become extinct. However, their geographical range and metapopulation structure will remain relatively unaffected throughout Europe. These species would benefit more from an improved habitat quality and management of the existing network of protected areas than from increased connectivity or assisted migration.
Landscape Ecology | 2013
Valeria Tomaselli; Panayotis Dimopoulos; Carmela Marangi; Athanasios S. Kallimanis; Maria Adamo; Cristina Tarantino; Maria Panitsa; Massimo Terzi; Giuseppe Veronico; Francesco P. Lovergine; Harini Nagendra; Richard Lucas; Paola Mairota; C.A. Mücher; Palma Blonda
Periodic monitoring of biodiversity changes at a landscape scale constitutes a key issue for conservation managers. Earth observation (EO) data offer a potential solution, through direct or indirect mapping of species or habitats. Most national and international programs rely on the use of land cover (LC) and/or land use (LU) classification systems. Yet, these are not as clearly relatable to biodiversity in comparison to habitat classifications, and provide less scope for monitoring. While a conversion from LC/LU classification to habitat classification can be of great utility, differences in definitions and criteria have so far limited the establishment of a unified approach for such translation between these two classification systems. Focusing on five Mediterranean NATURA 2000 sites, this paper considers the scope for three of the most commonly used global LC/LU taxonomies—CORINE Land Cover, the Food and Agricultural Organisation (FAO) land cover classification system (LCCS) and the International Geosphere-Biosphere Programme to be translated to habitat taxonomies. Through both quantitative and expert knowledge based qualitative analysis of selected taxonomies, FAO-LCCS turns out to be the best candidate to cope with the complexity of habitat description and provides a framework for EO and in situ data integration for habitat mapping, reducing uncertainties and class overlaps and bridging the gap between LC/LU and habitats domains for landscape monitoring—a major issue for conservation. This study also highlights the need to modify the FAO-LCCS hierarchical class description process to permit the addition of attributes based on class-specific expert knowledge to select multi-temporal (seasonal) EO data and improve classification. An application of LC/LU to habitat mapping is provided for a coastal Natura 2000 site with high classification accuracy as a result.
Landscape Ecology | 2009
Antonios D. Mazaris; Athanasios S. Kallimanis; George Chatzigianidis; Kimonas Papadimitriou; John D. Pantis
So far landscape analysis meant analysis of the spatial pattern of land cover or land use. However, biological organisms do not perceive the landscape only as land cover or land use, but they use all their senses, in order to become familiar with and react to their surroundings. We analyzed the acoustic environment as an additional layer of spatial information in landscape analysis, shortening the monopoly of visual patterns as landscape descriptors. We recorded sounds from a rural protected area into seven categories based on their origin, and examined their spatiotemporal variability and their correlation with landscape characteristics. The sounds were distinguished as Foreground or Background sounds. Foreground sounds correspond to sharp sounds originating near the observer and usually are understood as signals of urgent information, triggering reactions; while background sounds carry information over longer distances and may be used as landmarks to help individuals find their bearing even in the absence of visual signs. We found that the acoustic environment varies both temporally and spatially reflecting anthropogenic, geophysical and biological activities. The spatial pattern of the background sounds correlates, to an extent, with the visually perceived landscape features, but it does not correlate with the spatial pattern of the foreground sounds, which do not correlate strongly with the landscape pattern. This spatial pattern mismatch between acoustic environment and landscape, along with the highly dynamic nature of the acoustic environment compared to the relatively static nature of the land cover and land use spatial pattern highlight a limitation of the classical landscape analysis, and expands our understanding of the cognitive landscape.
Plant Ecology | 2009
Evgenia Chaideftou; Costas A. Thanos; Erwin Bergmeier; Athanasios S. Kallimanis; Panayotis Dimopoulos
We investigate the persistent soil seed bank composition and its relation to the above-ground flora of grazed and non-grazed sub-Mediterranean deciduous oak forests of NW Greece. Twenty-eight taxa were recorded in the soil seed bank and 83 taxa (70 taxa in plots of seed bank sampling) in the above-ground vegetation. The dominant tree species and many woodland species found in the above-ground vegetation were absent from the soil seed bank. Similarity between the soil seed bank and the above-ground vegetation decreased with grazing, and grazing led to a decrease of species richness in above-ground vegetation and soil seed bank. Beta diversity of vegetation among grazed and among non-grazed plots did not differ, but was significantly higher between grazed and non-grazed areas. Beta diversity of the soil seed bank declined with grazing. When applying classification tree and logistic regression analyses, non-grazed forest sites are clearly differentiated by the presence of Phillyrea latifolia, Euphorbia amygdaloides and Brachypodium sylvaticum. PCA ordination of above-ground species composition reflected a gradient from sites grazed by ruminants to non-grazed sites, but no clear structure was detected in the seed bank.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Antonios D. Mazaris; Athanasios S. Kallimanis; John D. Pantis; Graeme C. Hays
Variations in environmental parameters (e.g. temperature) that form part of global climate change have been associated with shifts in the timing of seasonal events for a broad range of organisms. Most studies evaluating such phenological shifts of individual taxa have focused on a limited number of locations, making it difficult to assess how such shifts vary regionally across a species range. Here, by using 1445 records of the date of first nesting for loggerhead sea turtles (Caretta caretta) at different breeding sites, on different continents and in different years across a broad latitudinal range (25–39° ′N), we demonstrate that the gradient of the relationship between temperature and the date of first breeding is steeper at higher latitudes, i.e. the phenological responses to temperature appear strongest at the poleward range limit. These findings support the hypothesis that biological changes in response to climate change will be most acute at the poleward range limits and are in accordance with the predictions of MacArthurs hypothesis that poleward range limit for species range is environmentally limited. Our findings imply that the poleward populations of loggerheads are more sensitive to climate variations and thus they might display the impacts of climate change sooner and more prominently.
Biodiversity and Conservation | 2011
Alexandra D. Papanikolaou; Nikolaos M. Fyllas; Antonios D. Mazaris; Panayiotis G. Dimitrakopoulos; Athanasios S. Kallimanis; John D. Pantis
Grazing is one of the prevalent human activities that even today are taking place inside protected areas with direct or indirect effects on ecosystems. In this study we analyzed the effects of grazing on plant species diversity, plant functional group (PFG) diversity and community composition of shrublands. We analyzed plant diversity data from 582 sampling plots located in 66 protected areas of the Greek Natura 2000 network, containing in total 1102 plant species and subspecies. We also classified a priori all plant species in seven PFGs: annual forbs, annual grasses/sedges, legumes, perennial forbs, perennial grasses/sedges, small shrubs and tall shrubs. For each site, grazing intensity was estimated in four classes (no grazing, low, medium and high grazing intensity). We found that, at the spatial and temporal scale of this study, as grazing intensity increased, so did total species richness. However, each PFG displayed a different response to grazing. Short-lived species (annual grasses or forbs and legumes) benefited from grazing and their species richness and proportion in the community increased with grazing. Perennial grasses and forbs species richness increased with grazing intensity, but their dominance decreased, since their proportion in the community declined. Short shrub species richness remained unaffected by grazing, while tall shrub diversity decreased. Finally, in sites without grazing the spatial pattern of species richness of the different PFGs was not congruent with each other, while in grazed sites they were significantly positively correlated (with the exception of tall shrubs). This finding may imply that grazing is a selective pressure organizing the community structure, and imposing a certain contribution of each PFG. So, in Mediterranean shrublands in protected areas with a long historical record of grazing, it seems that grazing promotes species diversity and its continuation on a portion of the landscape may be a necessary part of an effective management plan.
Plant Ecology | 2008
Athanasios S. Kallimanis; John M. Halley; Despina Vokou; Stefanos P. Sgardelis
We examine the spatial pattern of woody species diversity at different scales, in two sites of Mt. Holomontas in northern Greece, which falls within the transitional zone between temperate forests and Mediterranean-type ecosystems. We investigate how diversity is distributed in space and whether the perceived pattern changes with the scale of observation. We use two different metrics of diversity: species richness and species turnover. Our main finding is that the spatial pattern of diversity changes with the scale of observation or analysis. For a given scale, the pattern of species richness (alpha diversity) is negatively correlated with the pattern of species turnover (beta diversity). Species-rich areas have more species in common with their neighbors than species-poor areas. The between-scale disparity of the spatial pattern of diversity may be a general feature of ecological systems. For this to be validated, studies with different groups of species in different biomes and in different biogeographical areas are required; our study contributes to this direction providing evidence that this holds true for woody species in Mediterranean communities. Finally, we discuss how these findings might affect important issues in theoretical and applied ecology, such as identifying the environmental factors driving biodiversity.
Biodiversity and Conservation | 2007
Athanasios S. Kallimanis; Vaia Ragia; Stefanos P. Sgardelis; John D. Pantis
Different environmental factors act as driving forces of diversity at different scales of analysis; and also the effect of one environmental factor changes as the scale of analysis changes. Most studies rely on multiple regression models, and such models tend to mix-up the effect of all factors and assume that factors effects are additive. We believe that the effect of environment on diversity should be characterized by a hierarchical structure with coarse scale factors, like geographical tropics to poles gradients, defining the envelope of possible diversity conditions, and other more local factors, like habitat structure, being responsible for the fine tuning of diversity. This structure is most efficiently modeled with regression trees. We show that for six habitat types in Greek protected areas regression tree models were able to describe plant species richness based upon environmental factors considerably more efficiently than multiple regression models. More importantly when the models were extrapolated to other sites in Greece, outside their domain, the differences between the predictive ability of the two approaches was magnified. The tree models picked up important ecological characteristics, and a hierarchical structure that used coarse scale factors, like latitude and longitude, for the coarse scale estimate of alpha diversity, and finer scale factors like fragmentation, for the fine-tuning of the estimation. Therefore, we advocate that the regression tree methodology is most appropriate for modeling the relationship between diversity and environmental factors, and the use of the classical regression approaches might be misleading.
Biodiversity and Conservation | 2015
Athanasios S. Kallimanis; Konstantinos Touloumis; Joseph Tzanopoulos; Antonios D. Mazaris; Evangelia Apostolopoulou; Sofia Stefanidou; Anna V. Scott; Simon G. Potts; John D. Pantis
EU conservation policy is primarily based on the Natura 2000 network of protected areas (PAs). We analyzed the land-cover changes between 2000 and 2006 inside 25,703 Natura 2000 sites in 24 EU Member States, and compared them with those observed outside the PAs. At the EU level, ‘Artificial surfaces’ and ‘Agricultural areas’ exhibit lower rates of transformation within PAs than outside. ‘Forests and semi-natural areas’ marginally increased inside PAs, while they marginally decreased outside. In States that joined the EU before 2000, landscape transformation rates were low, and inside PAs ‘Forest’ preservation was accompanied with a shift from intensive agricultural practices ‘Permanent arable land’ to more diverse ‘Agricultural mosaics’. In new Member States (most of them located in Eastern Europe), there was agricultural abandonment, with conversion to ‘Artificial surfaces’ or ‘Natural vegetation’, both within and outside PAs. Broad scale EU policies (like the Common Agricultural Policy) and socio-economic drivers (like the transition from planned to market economy) seem to be dominant factors in explaining land-cover transformations, while conservation policies may moderate these trends inside PAs.