B. A. Babcock
Williams College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by B. A. Babcock.
Nature | 2003
James L. Elliot; Alper Ates; B. A. Babcock; Amanda Bosh; Marc William Buie; K. B. Clancy; Earl W. Dunham; Stephen S. Eikenberry; D. T. Hall; Susan Diane Kern; S. K. Leggett; Stephen E. Levine; D.-S. Moon; Catherine B. Olkin; David J. Osip; Jay M. Pasachoff; Bryan E. Penprase; S. H. Qu; John T. Rayner; L. C. Roberts; Colette Salyk; S. P. Souza; Roger C. Stone; Brian Taylor; D. J. Tholen; J. E. Thomas-Osip; David Ticehurst; L. H. Wasserman
Stellar occultations—the passing of a relatively nearby body in front of a background star—can be used to probe the atmosphere of the closer body with a spatial resolution of a few kilometres (ref. 1). Such observations can yield the scale height, temperature profile, and other information about the structure of the occulting atmosphere. Occultation data acquired for Plutos atmosphere in 1988 revealed a nearly isothermal atmosphere above a radius of ∼1,215 km. Below this level, the data could be interpreted as indicating either an extinction layer or the onset of a large thermal gradient, calling into question the fundamental structure of this atmosphere. Another question is to what extent Plutos atmosphere might be collapsing as it recedes from the Sun (passing perihelion in 1989 in its 248-year orbital period), owing to the extreme sensitivity of the equilibrium surface pressure to the surface temperature. Here we report observations at a variety of visible and infrared wavelengths of an occultation of a star by Pluto in August 2002. These data reveal evidence for extinction in Plutos atmosphere and show that it has indeed changed, having expanded rather than collapsed, since 1988.
Nature | 2010
James L. Elliot; Carlos Zuluaga; Amanda Bosh; Elisabeth R. Adams; A. A. S. Gulbis; Stephen E. Levine; Melissa Fitch Lockhart; A. M. Zangari; B. A. Babcock; K. M. DuPre; Jay M. Pasachoff; S. P. Souza; W. Rosing; N. Secrest; Leonard P. Bright; Edward Wood Dunham; Scott S. Sheppard; M. Kakkala; T. Tilleman; B. Berger; J. W. Briggs; G. Jacobson; P. Valleli; B. Volz; S. Rapoport; Rhodes Hart; M. Brucker; R. Michel; A. Mattingly; L. Zambrano-Marin
The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX300) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 ut. We find that it has a mean radius of 143 ± 5 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.
Nature | 1998
James L. Elliot; Heidi B. Hammel; L. H. Wasserman; Otto G. Franz; S. W. McDonald; Catherine B. Olkin; Edward W. Dunham; John R. Spencer; John A. Stansberry; Marc William Buie; Jay M. Pasachoff; B. A. Babcock; T. H. McConnochie
Triton, Neptunes largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years—significantly faster than predicted by any published frost model for Triton,. Our result suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.
Nature | 2006
Amanda A. S. Gulbis; J. L. Elliot; Elisabeth R. Adams; B. A. Babcock; M. Emilio; Joseph W. Gangestad; Susan Diane Kern; E. A. Kramer; D. J. Osip; Jay M. Pasachoff; S. P. Souza; T. Tuvikene
The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600–650 km (ref. 5), corresponding to a density of 1.56 ± 0.22 g cm-3 (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 ± 8 km, a bulk density of 1.72 ± 0.15 g cm-3, and rock-mass fraction 0.63 ± 0.05. We do not detect a significant atmosphere and place 3σ upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto–Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.
The Astronomical Journal | 2008
J. L. Elliot; Amanda A. S. Gulbis; Carlos Zuluaga; B. A. Babcock; Ailsa McKay; Jay M. Pasachoff; S. P. Souza; William B. Hubbard; Craig Kulesa; Diane McCarthy; Susan D. Benecchi; Stephen E. Levine; A. S. Bosh; Eileen V. Ryan; W. H. Ryan; Allan W. Meyer; Jürgen Wolf; John M. Hill
Observations of the 2007 March 18 occultation of the star P445.3 (2UCAC 25823784; R = 15.3) by Pluto were obtained at high time resolution at five sites across the western United States and reduced to produce light curves for each station using standard aperture photometry. Global models of Pluto’s upper atmosphere are fitted simultaneously to all resulting light curves. The results of these model fits indicate that the structure of Pluto’s upper atmosphere is essentially unchanged since the previous occultation observed in 2006, leading to a well-constrained measurement of the atmospheric half-light radius at 1291 ± 5 km. These results also confirm that the significant increase in atmospheric pressure detected between 1988 and 2002 has ceased. Inversion of the Multiple Mirror Telescope Observatory light curves with unprecedented signal-to-noise ratios reveals significant oscillations in the number density, pressure, and temperature profiles of Pluto’s atmosphere. Detailed analysis of this highest resolution light curve indicates that these variations in Pluto’s upper atmospheric structure exhibit a previously unseen oscillatory structure with strong correlations of features among locations separated by almost 1200 km in Pluto’s atmosphere. Thus, we conclude that these variations are caused by some form of large-scale atmospheric waves. Interpreting these oscillations as Rossby (planetary) waves allows us to establish an upper limit of less than 3ms −1 for horizontal wind speeds in the sampled region (radius 1340–1460 km) of Pluto’s upper atmosphere.
The Astronomical Journal | 2006
James L. Elliot; Amanda A. S. Gulbis; Jay M. Pasachoff; B. A. Babcock; S. P. Souza; J. Gangestad
The 2005 July 11 C313.2 stellar occultation by Charon was observed by three separate research groups, including our own, at observatories throughout South America. Here, the published timings from the three data sets have been combined to more accurately determine the mean radius of Charon: 606.0 ± 1.5 km. Our analysis indicates that a slight oblateness in the body (0.006 ± 0.003) best matches the data, with a confidence level of 86%. The oblateness has a pole position angle of 714 ± 104 and is consistent with Charons pole position angle of 67°. Charons mean radius corresponds to a bulk density of 1.63 ± 0.07 g cm-3, which is significantly less than Plutos (1.92 ± 0.12 g cm-3). This density differential favors an impact formation scenario for the system in which at least one of the impactors was differentiated. Finally, unexplained differences between chord timings measured at Cerro Pachon and the rest of the data set could be indicative of a depression as deep as 7 km on Charons limb.
The Astronomical Journal | 2005
Jay M. Pasachoff; S. P. Souza; B. A. Babcock; David Ticehurst; James L. Elliot; K. B. Clancy; Jr . Lewis C. Roberts; D. T. Hall; David J. Tholen
We have observed the 2002 August 21 occultation by Pluto of theR ¼ 15:7mag star P131.1, using 0.5 s cadence observations in integrated white light with the Williams College frame-transfer, rapid-readout CCD at the 2.24 m University of Hawaii telescope. We detected an occultation that lasted 5 minutes, 9:1 � 0:7 s between half-light points. The ‘‘kinks’’ in the ingress and egress parts of the curve that were apparent in 1988 had become much less pronounced by the time of the two 2002 occultations that were observed, indicating a major change in the structure ofPluto’satmosphere.AnalysisofourlightcurvesshowsthatthepressureinPluto’satmospherehasincreasedatall the altitudes that we probed. Essentially, the entire pressure scale has moved up in altitude, increasing by a factor of 2 since 1988. Spikes in our light curve reveal vertical structure in Pluto’s atmosphere at unprecedentedly high resolution.Wehaveconfirmationofourspikesatlowertimeresolutionaspartofobservationsoftheemersionmade at 1.4 s and 2.4 s cadence with the 3.67 m AEOS telescope on Maui.
The Astronomical Journal | 2013
Edward W. Dunham; Amanda Bosh; Stephen E. Levine; Amanda A. S. Gulbis; Amanda Zangari; Carlos Zuluaga; Jay M. Pasachoff; B. A. Babcock; S. Pandey; D. Amrhein; S. Sallum; D. J. Tholen; P. Collins; T. Bida; B. Taylor; Leonard P. Bright; Jürgen Wolf; A. W. Meyer; E. Pfueller; M. Wiedemann; H.-P. Roeser; R. Lucas; M. Kakkala; J. Ciotti; S. Plunkett; N. Hiraoka; William M. J. Best; E. J. Pilger; Marco Micheli; A. Springmann
On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Plutos atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Plutos evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizons flyby in 2015.
Publications of the Astronomical Society of the Pacific | 2006
S. P. Souza; B. A. Babcock; Jay M. Pasachoff; Amanda A. S. Gulbis; James L. Elliot; Joseph W. Gangestad
Occultations of stars by small bodies in the outer solar system are opportunities to make high- resolution measurements of their geometries and orbital elements and to detect or probe their atmospheres. Such events are limited in space and time, so it is desirable to deploy highly capable camera systems on multiple fixed and/or portable telescopes anywhere in the world, potentially on short notice. Similar considerations apply to planetary transits and solar eclipses. We have designed a camera system called POETS (Portable Occultation, Eclipse, and Transit System), which is optimized for occultation and related observations, and have assembled five such systems. The core of this system is the Andor Technology DV-887 (now DU-897) frame-transfercamera, featuring a high frame rate, minimal dead time, high quantum efficiency, and low read noise. An electron- multiplying mode lowers effective read noise to below 1 e ! pixel ! 1 and is capable of photon counting. Each POETS includes a compact GPS timing system with microsecond accuracy, and a high-performance computer system capable of sustained fast frame rates. Each POETS is designed to be transportable as carry-on luggage and is adaptable to a wide variety of sites. POETS were deployed for the first time for the 2005 July 11 Charon occultation event, and they performed extremely well on telescopes with apertures from 0.6 to 6.5 m. Three POETS were subsequently deployed for the 2006 March 29 total solar eclipse, and five for the 2006 June 12 Pluto occultation.
The Astrophysical Journal | 2008
Jay M. Pasachoff; V. Rušin; Miloslav Druckmüller; Hana Druckmüllerová; M. Bělík; Metod Saniga; M. Minarovjech; E. Markova; B. A. Babcock; S. P. Souza; J. S. Levitt
We discuss a remarkable brightening in a polar plume, as inferred from unique coordinated observations of the white-light corona during the total eclipse of the Sun of 2006 March 29. The polar plume (also known as a polar ray, with distinctions that we discuss) was observed at the positional angle of 9°; the velocity at which the brightening propagated was about 65 km s−1, which is close to the values derived by modeling of mass/energy transfer in polar plumes/rays as well as to those acquired from images from the Extreme-ultraviolet Imaging Telescope on the European Space Agency/NASA Solar and Heliospheric Observatory (SOHO/EIT). Comparing our data with those from the SOHO/LASCO C2 coronagraph, we estimate the lifetime of the polar ray to be less than 24 hr.