Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Ahmed Rasheed is active.

Publication


Featured researches published by B. Ahmed Rasheed.


Science | 2008

An Integrated Genomic Analysis of Human Glioblastoma Multiforme

D. Williams Parsons; Siân Jones; Xiaosong Zhang; Jimmy Lin; Rebecca J. Leary; Philipp Angenendt; Parminder Mankoo; Hannah Carter; I-Mei Siu; Gary L. Gallia; Alessandro Olivi; Roger E. McLendon; B. Ahmed Rasheed; Stephen T. Keir; Tatiana Nikolskaya; Yuri Nikolsky; Dana Busam; Hanna Tekleab; Luis A. Diaz; James Hartigan; Doug Smith; Robert L. Strausberg; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Hai Yan; Gregory J. Riggins; Darell D. Bigner; Rachel Karchin; Nick Papadopoulos; Giovanni Parmigiani

Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.


The New England Journal of Medicine | 2009

IDH1 and IDH2 Mutations in Gliomas

Hai Yan; D. Williams Parsons; Genglin Jin; Roger E. McLendon; B. Ahmed Rasheed; Weishi Yuan; Ivan Kos; Ines Batinic-Haberle; Siân Jones; Gregory J. Riggins; Henry S. Friedman; Allan H. Friedman; David A. Reardon; James E. Herndon; Kenneth W. Kinzler; Victor E. Velculescu; Bert Vogelstein; Darell D. Bigner

BACKGROUND A recent genomewide mutational analysis of glioblastomas (World Health Organization [WHO] grade IV glioma) revealed somatic mutations of the isocitrate dehydrogenase 1 gene (IDH1) in a fraction of such tumors, most frequently in tumors that were known to have evolved from lower-grade gliomas (secondary glioblastomas). METHODS We determined the sequence of the IDH1 gene and the related IDH2 gene in 445 central nervous system (CNS) tumors and 494 non-CNS tumors. The enzymatic activity of the proteins that were produced from normal and mutant IDH1 and IDH2 genes was determined in cultured glioma cells that were transfected with these genes. RESULTS We identified mutations that affected amino acid 132 of IDH1 in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes. Each of four tested IDH1 and IDH2 mutations reduced the enzymatic activity of the encoded protein. CONCLUSIONS Mutations of NADP(+)-dependent isocitrate dehydrogenases encoded by IDH1 and IDH2 occur in a majority of several types of malignant gliomas.


Journal of Clinical Oncology | 2004

Phase II Trial of Gefitinib in Recurrent Glioblastoma

Jeremy N. Rich; David A. Reardon; Terry S. Peery; Jeannette M. Dowell; Jennifer A. Quinn; Kara Penne; Carol J. Wikstrand; Lauren B. Van Duyn; Janet E. Dancey; Roger E. McLendon; James C. Kao; Timothy T. Stenzel; B. Ahmed Rasheed; Sandra Tourt-Uhlig; James E. Herndon; James J. Vredenburgh; John H. Sampson; Allan H. Friedman; Darell D. Bigner; Henry S. Friedman

PURPOSE To evaluate the efficacy and tolerability of gefitinib (ZD1839, Iressa; AstraZeneca, Wilmington, DE), a novel epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. PATIENTS AND METHODS This was an open-label, single-center phase II trial. Fifty-seven patients with first recurrence of a glioblastoma who were previously treated with surgical resection, radiation, and usually chemotherapy underwent an open biopsy or resection at evaluation for confirmation of tumor recurrence. Each patient initially received 500 mg of gefitinib orally once daily; dose escalation to 750 mg then 1,000 mg, if a patient received enzyme-inducing antiepileptic drugs or dexamethasone, was allowed within each patient. RESULTS Although no objective tumor responses were seen among the 53 assessable patients, only 21% of patients (11 of 53 patients) had measurable disease at treatment initiation. Seventeen percent of patients (nine of 53 patients) underwent at least six 4-week cycles, and the 6-month event-free survival (EFS) was 13% (seven of 53 patients). The median EFS time was 8.1 weeks, and the median overall survival (OS) time from treatment initiation was 39.4 weeks. Adverse events were generally mild (grade 1 or 2) and consisted mainly of skin reactions and diarrhea. Drug-related toxicities were more frequent at higher doses. Withdrawal caused by drug-related adverse events occurred in 6% of patients (three of 53 patients). Although the presence of diarrhea positively predicted favorable OS from treatment initiation, epidermal growth factor receptor expression did not correlate with either EFS or OS. CONCLUSION Gefitinib is well tolerated and has activity in patients with recurrent glioblastoma. Further study of this agent at higher doses is warranted.


Proceedings of the National Academy of Sciences of the United States of America | 2013

TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal

Patrick J. Killela; Zachary J. Reitman; Yuchen Jiao; Chetan Bettegowda; Nishant Agrawal; Luis A. Diaz; Allan H. Friedman; Henry S. Friedman; Gary L. Gallia; Beppino C. Giovanella; Arthur P. Grollman; Tong-Chuan He; Yiping He; Ralph H. Hruban; George I. Jallo; Nils Mandahl; Alan K. Meeker; Fredrik Mertens; George J. Netto; B. Ahmed Rasheed; Gregory J. Riggins; Thomas A. Rosenquist; Mark Schiffman; Ie Ming Shih; Dan Theodorescu; Michael Torbenson; Victor E. Velculescu; Tian Li Wang; Nicolas Wentzensen; Laura D. Wood

Malignant cells, like all actively growing cells, must maintain their telomeres, but genetic mechanisms responsible for telomere maintenance in tumors have only recently been discovered. In particular, mutations of the telomere binding proteins alpha thalassemia/mental retardation syndrome X-linked (ATRX) or death-domain associated protein (DAXX) have been shown to underlie a telomere maintenance mechanism not involving telomerase (alternative lengthening of telomeres), and point mutations in the promoter of the telomerase reverse transcriptase (TERT) gene increase telomerase expression and have been shown to occur in melanomas and a small number of other tumors. To further define the tumor types in which this latter mechanism plays a role, we surveyed 1,230 tumors of 60 different types. We found that tumors could be divided into types with low (<15%) and high (≥15%) frequencies of TERT promoter mutations. The nine TERT-high tumor types almost always originated in tissues with relatively low rates of self renewal, including melanomas, liposarcomas, hepatocellular carcinomas, urothelial carcinomas, squamous cell carcinomas of the tongue, medulloblastomas, and subtypes of gliomas (including 83% of primary glioblastoma, the most common brain tumor type). TERT and ATRX mutations were mutually exclusive, suggesting that these two genetic mechanisms confer equivalent selective growth advantages. In addition to their implications for understanding the relationship between telomeres and tumorigenesis, TERT mutations provide a biomarker that may be useful for the early detection of urinary tract and liver tumors and aid in the classification and prognostication of brain tumors.


Science | 2011

The genetic landscape of the childhood cancer medulloblastoma

D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran

Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.


Science | 2011

Altered telomeres in tumors with ATRX and DAXX mutations.

Christopher M. Heaphy; Roeland F. De Wilde; Yuchen Jiao; Alison P. Klein; Barish H. Edil; Chanjuan Shi; Chetan Bettegowda; Fausto J. Rodriguez; Charles G. Eberhart; Sachidanand Hebbar; G. Johan A. Offerhaus; Roger E. McLendon; B. Ahmed Rasheed; Yiping He; Hai Yan; Darell D. Bigner; Sueli Mieko Oba-Shinjo; Suely Kazue Nagahashi Marie; Gregory J. Riggins; Kenneth W. Kinzler; Bert Vogelstein; Ralph H. Hruban; Anirban Maitra; Nickolas Papadopoulos; Alan K. Meeker

Chromosome tips seem to be maintained by an unusual mechanism in tumors that have mutations in chromatin remodeling genes. The proteins encoded by ATRX and DAXX participate in chromatin remodeling at telomeres and other genomic sites. Because inactivating mutations of these genes are common in human pancreatic neuroendocrine tumors (PanNETs), we examined the telomere status of these tumors. We found that 61% of PanNETs displayed abnormal telomeres that are characteristic of a telomerase-independent telomere maintenance mechanism termed ALT (alternative lengthening of telomeres). All of the PanNETs exhibiting these abnormal telomeres had ATRX or DAXX mutations or loss of nuclear ATRX or DAXX protein. ATRX mutations also correlate with abnormal telomeres in tumors of the central nervous system. These data suggest that an alternative telomere maintenance function may operate in human tumors with alterations in the ATRX or DAXX genes.


Cancer Research | 2005

Gene expression profiling and genetic markers in glioblastoma survival

Jeremy N. Rich; Chris Hans; Beatrix Jones; Edwin S. Iversen; Roger E. McLendon; B. Ahmed Rasheed; Adrian Dobra; Holly K. Dressman; Darell D. Bigner; Joseph R. Nevins; Mike West

Despite the strikingly grave prognosis for older patients with glioblastomas, significant variability in patient outcome is experienced. To explore the potential for developing improved prognostic capabilities based on the elucidation of potential biological relationships, we did analyses of genes commonly mutated, amplified, or deleted in glioblastomas and DNA microarray gene expression data from tumors of glioblastoma patients of age >50 for whom survival is known. No prognostic significance was associated with genetic changes in epidermal growth factor receptor (amplified in 17 of 41 patients), TP53 (mutated in 11 of 41 patients), p16INK4A (deleted in 15 of 33 patients), or phosphatase and tensin homologue (mutated in 15 of 41 patients). Statistical analysis of the gene expression data in connection with survival involved exploration of regression models on small subsets of genes, based on computational search over multiple regression models with cross-validation to assess predictive validity. The analysis generated a set of regression models that, when weighted and combined according to posterior probabilities implied by the statistical analysis, identify patterns in expression of a small subset of genes that are associated with survival and have value in assessing survival risks. The dominant genes across such multiple regression models involve three key genes-SPARC (Osteonectin), Doublecortex, and Semaphorin3B-which play key roles in cellular migration processes. Additional analysis, based on statistical graphical association models constructed using similar computational analysis methods, reveals other genes which support the view that multiple mediators of tumor invasion may be important prognostic factor in glioblastomas in older patients.


Current Opinion in Oncology | 1999

Molecular pathogenesis of malignant gliomas.

B. Ahmed Rasheed; Rodney N. Wiltshire; Sandra H. Bigner; Darell D. Bigner

De novo glioblastomas develop in older patients without prior clinical history of less malignant tumors. Progressive glioblastomas are common among younger patients and arise through progression from lower-grade astrocytomas. CDKN2A deletions, PTEN alterations, and EGFR amplification are more prevalent among de novo glioblastomas, whereas p53 mutations are more common among progressive glioblastomas. Loss of heterozygosity (LOH) for chromosome 10 is seen uniformly among both de novo and progressive high-grade astrocytomas. The inactivation of the PTEN gene is found in approximately 30% to 40% of astrocytomas with chromosome 10 loss, and LOH pattern in the remaining astrocytomas strongly supports the presence of another yet unidentified tumor suppressor gene telomeric to PTEN. More than 80% of oligodendrogliomas exhibit LOH for 1 p and 19q alleles. Oligoastrocytomas with 1p/19q LOH are related to oligodendrogliomas, and those with p53 mutations are related to astrocytomas.


Clinical Cancer Research | 2005

ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors

Jeremy N. Rich; Sith Sathornsumetee; Stephen T. Keir; Mark W. Kieran; Andrea Laforme; Arja Kaipainen; Roger E. McLendon; Michael W. Graner; B. Ahmed Rasheed; Ling Wang; David A. Reardon; Anderson J. Ryan; Catherine Wheeler; Isaiah Dimery; Darell D. Bigner; Henry S. Friedman

Purpose: Primary central nervous system (CNS) tumors represent a diverse group of tumor types with heterogeneous molecular mechanisms that underlie their formation and maintenance. CNS tumors depend on angiogenesis and often display increased activity of ErbB-associated pathways. Current nonspecific therapies frequently have poor efficacy in many of these tumor types, so there is a pressing need for the development of novel targeted therapies. Experimental Design: ZD6474 is a novel, orally available low molecular weight inhibitor of the kinase activities associated with vascular endothelial growth factor receptor-2 and epidermal growth factor receptor. We hypothesized that ZD6474 may provide benefit in the treatment of several CNS tumor types. Results: In mice bearing established s.c. tumor xenografts of CNS tumors (malignant glioma and ependymoma) or rhabdomyosarcoma, a limited course of ZD6474 treatment produced significant tumor growth delays and a high rate of partial tumor regression in most models examined. Mice with i.c. malignant glioma xenografts treated with ZD6474 experienced a significant prolongation of survival. Tumors from mice treated with ZD6474 displayed a lower proliferative index and disrupted tumor vascularity. Notably, some of these models are insensitive to low molecular weight kinase inhibitors targeting only vascular endothelial growth factor receptor-2 or epidermal growth factor receptor functions, suggesting that the combined disruption of both epidermal growth factor receptor and vascular endothelial growth factor receptor-2 activities may significantly increase tumor control. Conclusions: In conclusion, ZD6474 shows significant activity against xenograft models of several primary human CNS tumor types. Consideration for clinical development in this disease setting seems warranted.


Cancer Research | 2006

AAL881, a novel small molecule inhibitor of RAF and vascular endothelial growth factor receptor activities, blocks the growth of malignant glioma.

Sith Sathornsumetee; Anita B. Hjelmeland; Stephen T. Keir; Roger E. McLendon; David Bryant Batt; Timothy Michael Ramsey; Naeem Yusuff; B. Ahmed Rasheed; Mark W. Kieran; Andrea Laforme; Darell D. Bigner; Henry S. Friedman; Jeremy N. Rich

Malignant gliomas are highly proliferative and angiogenic cancers resistant to conventional therapies. Although RAS and RAF mutations are uncommon in gliomas, RAS activity is increased in gliomas. Additionally, vascular endothelial growth factor and its cognate receptors are highly expressed in gliomas. We now report that AAL881, a novel low-molecular weight inhibitor of the kinase activities associated with B-RAF, C-RAF (RAF-1), and VEGF receptor-2 (VEGFR2), showed activity against glioma cell lines and xenografts. In culture, AAL881 inhibited the downstream effectors of RAF in a concentration-dependent manner, with inhibition of proliferation associated with a G(1) cell cycle arrest, induction of apoptosis, and decreased colony formation. AAL881 decreased the proliferation of bovine aortic endothelial cells as well as the tumor cell secretion of vascular endothelial growth factor and inhibited the invasion of glioma cells through an artificial extracellular matrix. Orally administered AAL881 was well tolerated with minimal weight loss in non-tumor-bearing mice. Established s.c. human malignant glioma xenografts grown in immunocompromised mice treated with a 10-day course of oral AAL881 exhibited growth delays relative to control tumors, frequently resulting in long-term complete regressions. AAL881 treatment extended the survival of immunocompromised mice bearing orthotopic glioma xenografts compared with placebo controls. The intraparenchymal portions of orthotopic AAL881-treated tumors underwent widespread necrosis consistent with vascular disruption compared with the subarachnoid elements. These effects are distinct from our prior experience with VEGFR2 inhibitors, suggesting that targeting RAF itself or in combination with VEGFR2 induces profound tumor responses in gliomas and may serve as a novel therapeutic approach in patients with malignant gliomas.

Collaboration


Dive into the B. Ahmed Rasheed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory J. Riggins

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge