Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Van Wonterghem is active.

Publication


Featured researches published by B. Van Wonterghem.


Applied Optics | 2007

National Ignition Facility laser performance status

C. A. Haynam; Paul J. Wegner; Jerome M. Auerbach; M. W. Bowers; S. Dixit; G. V. Erbert; G. M. Heestand; Mark A. Henesian; Mark Hermann; Kenneth S. Jancaitis; Kenneth R. Manes; Christopher D. Marshall; N. C. Mehta; Joseph A. Menapace; E. I. Moses; J. R. Murray; M. Nostrand; Charles D. Orth; R. Patterson; Richard A. Sacks; M. J. Shaw; M. Spaeth; S. Sutton; Wade H. Williams; C. Clay Widmayer; R. K. White; Steven T. Yang; B. Van Wonterghem

The National Ignition Facility (NIF) is the worlds largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Physics of Plasmas | 2012

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

H. F. Robey; T. R. Boehly; Peter M. Celliers; Jon H. Eggert; Damien G. Hicks; R.F. Smith; R. Collins; M. W. Bowers; K. Krauter; P. S. Datte; D. H. Munro; J. L. Milovich; O. S. Jones; P. Michel; C. A. Thomas; R.E. Olson; Stephen M. Pollaine; R. P. J. Town; S. W. Haan; D. A. Callahan; D. S. Clark; J. Edwards; J. L. Kline; S. N. Dixit; M. B. Schneider; E. L. Dewald; K. Widmann; J. D. Moody; T. Döppner; H.B. Radousky

Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results ...


Review of Scientific Instruments | 2010

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited).

J. L. Kline; K. Widmann; A. Warrick; R.E. Olson; C. A. Thomas; A. S. Moore; L. J. Suter; O. L. Landen; D. A. Callahan; S. Azevedo; J. Liebman; S. H. Glenzer; A. D. Conder; S. Dixit; P. Torres; V. Tran; E. L. Dewald; J. Kamperschroer; L. J. Atherton; R. Beeler; L. V. Berzins; J. Celeste; C. A. Haynam; W. W. Hsing; D. W. Larson; B. J. MacGowan; D. E. Hinkel; D. H. Kalantar; R. L. Kauffman; J. D. Kilkenny

The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ∼20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. In addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of ∼2×10(15) W/cm(2) for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1×10(14) W/cm(2) over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to ±5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30±10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.


Physics of Plasmas | 2000

Exploring the limits of the National Ignition Facility’s capsule coupling

L. J. Suter; Joshua E. Rothenberg; D. H. Munro; B. Van Wonterghem; S. W. Haan

The original ignition “point designs” (circa 1992) for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] were made energetically conservative to provide margin for uncertainties in laser absorption, x-ray conversion efficiency and hohlraum-capsule coupling. Since that time, extensive experiments on Nova [J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989)] and Omega [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] and their related analysis indicate that NIF coupling efficiency may be almost “as good as we could hope for.” Given close agreement between experiment and theory/modeling, one can credibly explore target enhancements which couple more of NIFs energy to an ignition capsule. These include using optimized mixtures of materials to reduce x-ray wall losses, slightly reduced laser entrance holes, and laser operation strategies which increase the amount of energy one can extract from NIF. It is found that 3–4× increases in absorbe...


Physics of Plasmas | 2013

Hohlraum energetics scaling to 520 TW on the National Ignition Facility

J. L. Kline; D. A. Callahan; S. H. Glenzer; N. B. Meezan; J. D. Moody; D. E. Hinkel; O. S. Jones; A. J. Mackinnon; R. Bennedetti; R. L. Berger; D. K. Bradley; E. L. Dewald; I. Bass; C. Bennett; M. W. Bowers; G. K. Brunton; J. Bude; S. C. Burkhart; A. Condor; J. M. Di Nicola; P. Di Nicola; S. N. Dixit; T. Doeppner; E. G. Dzenitis; G. V. Erbert; J. Folta; G. P. Grim; S. Glenn; Alex V. Hamza; S. W. Haan

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ∼330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.


Applied Optics | 1998

Spatial filter pinhole for high-energy pulsed lasers

Peter M. Celliers; K. G. Estabrook; R. J. Wallace; James E. Murray; L. B. Da Silva; B. J. MacGowan; B. Van Wonterghem; Kenneth R. Manes

Spatial filters are essential components for maintaining high beam quality in high-energy pulsed laser systems. The long-duration (21 ns) high-energy pulses envisioned for future inertial-confinement fusion drive systems, such as the U.S. National Ignition Facility (NIF), are likely to lead to increased plasma generation and closure effects within the pinholes in the spatial filters. The design goal for the pinhole spatial filter for the NIF design is to remove small-angle scatter in the beam to as little as a ?100-murad divergence. It is uncertain whether this design requirement can be met with a conventional pinhole design. We propose a new pinhole architecture that addresses these issues by incorporating features intended to reduce the rate of plasma generation. Initial experiments with this design have verified its performance improvement relative to a conventional pinhole design.


Physics of Plasmas | 2006

Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility

J. W. McDonald; L. J. Suter; O. L. Landen; J.M. Foster; J. Celeste; J. P. Holder; E. L. Dewald; M. B. Schneider; D. E. Hinkel; R. L. Kauffman; L. J. Atherton; R. E. Bonanno; S. Dixit; David C. Eder; C. A. Haynam; D. H. Kalantar; Alice Koniges; F. D. Lee; B. J. MacGowan; Kenneth R. Manes; D. H. Munro; J. R. Murray; M. J. Shaw; R. M. Stevenson; T. Parham; B. Van Wonterghem; R. J. Wallace; Paul J. Wegner; Pamela K. Whitman; B. K. Young

Time resolved hard x-ray images (hv>9keV) and time integrated hard x-ray spectra (hv=18–150keV) from vacuum hohlraums irradiated with four 351nm wavelength National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] laser beams are presented as a function of hohlraum size, laser power, and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (Fhot) shows a correlation with laser intensity and with an empirical hohlraum plasma filling model. In addition, the significance of Au K-alpha emission and Au K-shell reabsorption observed in some of the bremsstrahlung dominated spectra is discussed.


Physics of Plasmas | 2005

Three-Dimensional Hydrodynamic Experiments on the National Ignition Facility

B. E. Blue; H. F. Robey; S. G. Glendinning; Matthew J. Bono; Scott C. Burkhart; J. Celeste; R. F. Coker; R. Costa; S. Dixit; J. M. Foster; J. F. Hansen; C. A. Haynam; Mark Hermann; J. P. Holder; W. W. Hsing; D. H. Kalantar; N. E. Lanier; D. A. Latray; H. Louis; B. J. MacGowan; G. R. Maggelssen; Christopher D. Marshall; E. I. Moses; A. J. Nikitin; D. W. O'Brien; T.S. Perry; M. W. Poole; V. V. Rekow; P.A. Rosen; M. B. Schneider

The production of supersonic jets of material via the interaction of a strong shock wave with a spatially localized density perturbation is a common feature of inertial confinement fusion and astrophysics. The behavior of two-dimensional (2D) supersonic jets has previously been investigated in detail [J. M. Foster et. al, Phys. Plasmas 9, 2251 (2002)]. In three-dimensions (3D), however, there are new aspects to the behavior of supersonic jets in compressible media. In this paper, the commissioning activities on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)] to enable hydrodynamic experiments will be presented as well as the results from the first series of hydrodynamic experiments. In these experiments, two of the first four beams of NIF are used to drive a 40 Mbar shock wave into millimeter scale aluminum targets backed by 100 mg/cc carbon aerogel foam. The remaining beams are delayed in time and are used to provide a point-projection x-ray backlighter source for diagnosing the three-dimensional structure of the jet evolution resulting from a variety of 2D and 3D features. Comparisons between data and simulations using several codes will be presented.


Physics of Plasmas | 2005

Laser coupling to reduced-scale hohlraum targets at the Early Light Program of the National Ignition Facility

D. E. Hinkel; M. B. Schneider; H. A. Baldis; G. Bonanno; Dan E. Bower; K. M. Campbell; J. Celeste; S. Compton; R. Costa; E. L. Dewald; S. Dixit; Mark J. Eckart; David C. Eder; M. J. Edwards; A.D. Ellis; J.A. Emig; D. H. Froula; S. H. Glenzer; D. Hargrove; C. A. Haynam; R. F. Heeter; M.A. Henesian; J. P. Holder; G. Holtmeier; L. James; D. H. Kalantar; J. Kamperschroer; R. L. Kauffman; J. R. Kimbrough; R. K. Kirkwood

A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. Depositing maximum laser energy into a small, high-Z enclosure produces this hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Phys. Rev. Lett. 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization or...

Collaboration


Dive into the B. Van Wonterghem's collaboration.

Top Co-Authors

Avatar

C. A. Haynam

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Dixit

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Kalantar

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. B. Schneider

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. W. Bowers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge