Barbara Schlingmann
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara Schlingmann.
Seminars in Cell & Developmental Biology | 2015
Barbara Schlingmann; Samuel A. Molina; Michael Koval
The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.
Journal of Experimental Botany | 2013
Zhong-Bao Yang; Dejene Eticha; Hendrik Führs; Dimitri Heintz; Daniel Ayoub; Alain Van Dorsselaer; Barbara Schlingmann; Idupulapati M. Rao; Hans-Peter Braun; Walter J. Horst
Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.
Nature Communications | 2016
Barbara Schlingmann; Christian E. Overgaard; Samuel A. Molina; K. Sabrina Lynn; Leslie A. Mitchell; StevenClaude Dorsainvil White; Alexa L. Mattheyses; David M. Guidot; Christopher T. Capaldo; Michael Koval
Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.
Purinergic Signalling | 2012
Willem Bintig; Daniela Begandt; Barbara Schlingmann; Linda Gerhard; Maria Pangalos; Lutz Dreyer; Natalija Hohnjec; Pierre-Olivier Couraud; Ignacio A. Romero; Babette B. Weksler; Anaclet Ngezahayo
The expression and physiology of purine receptors of the human blood–brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca2+-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y2-, P2Y6-, P2Y11- as well as the ionotropic P2X4-, P2X5- and P2X7-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca2+ concentration ([Ca2+]i) from 150 to 300 nM in single cells. The change in [Ca2+]i corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αβ-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP3 cascade-mediated Ca2+ release, indicating that the nucleotide-induced Ca2+ signal was mainly related to P2Y2, 6 and 11 receptors. The gene silencing of the P2Y2 receptor reduced the ATP- or UTP-induced Ca2+ signal and suppressed the Ca2+ signal mediated by P2Y6 and P2Y11 more specific agonists like UDP (P2Y6), BzATP (P2Y11) and ATPγS (P2Y11). This report identifies the P2Y2 receptor subtype as the main purine receptor involved in Ca2+ signalling of the hCMEC/D3 cells.
Tissue barriers | 2015
Christina Ward; Barbara Schlingmann; Arlene A. Stecenko; David M. Guidot; Michael Koval
NF-κB (p50/p65) is the best characterized transcription factor known to regulate cell responses to inflammation. However, NF-κB is also constitutively expressed. We used inhibitors of the classical NF-κB signaling pathway to determine whether this transcription factor has a role in regulating alveolar epithelial tight junctions. Primary rat type II alveolar epithelial cells were isolated and cultured on Transwell permeable supports coated with collagen for 5 d to generate a model type I cell monolayer. Treatment of alveolar epithelial monolayers overnight with one of 2 different IκB kinase inhibitors (BAY 11–7082 or BMS-345541) resulted in a dose-dependent decrease in TER at concentrations that did not affect cell viability. In response to BMS-345541 treatment there was an increase in total claudin-4 and claudin-5 along with a decrease in claudin-18, as determined by immunoblot. However, there was little effect on the total amount of cell-associated claudin-7, occludin, junctional adhesion molecule A (JAM-A), zonula occludens (ZO)-1 or ZO-2. Moreover, treatment with BMS-345541 resulted in altered tight junction morphology as assessed by immunofluorescence microscopy. Cells treated with BMS-345541 had an increase in claudin-18 containing projections emanating from tight junctions (“spikes”) that were less prominent in control cells. There also were several areas of cell-cell contact which lacked ZO-1 and ZO-2 localization as well as rearrangements to the actin cytoskeleton in response to BMS-345541. Consistent with an anti-inflammatory effect, BMS-345541 antagonized the deleterious effects of lipopolysaccharide (LPS) on alveolar epithelial barrier function. However, BMS-345541 also inhibited the ability of GM-CSF to increase alveolar epithelial TER. These data suggest a dual role for NF-κB in regulating alveolar barrier function and that constitutive NF-κB function is required for the integrity of alveolar epithelial tight junctions.
Journal of Bioenergetics and Biomembranes | 2012
Barbara Schlingmann; Patrik Schadzek; Stefan Busko; Alexander Heisterkamp; Anaclet Ngezahayo
Connexin46 (Cx46), together with Cx50, forms gap junction channels between lens fibers and participates in the lens pump-leak system, which is essential for the homeostasis of this avascular organ. Mutations in Cx50 and Cx46 correlate with cataracts, but the functional relationship between the mutations and cataract formation is not always clear. Recently, it was found that a mutation at the third position of hCx46 that substituted an aspartic acid residue with a tyrosine residue (hCx46D3Y) caused an autosomal dominant zonular pulverulent cataract. We expressed EGFP-labeled hCx46wt and hCx46D3Y in HeLa cells and found that the mutation did not affect the formation of gap junction plaques. Dye transfer experiments using Lucifer Yellow (LY) and ethidium bromide (EthBr) showed an increased degree of dye coupling between the cell pairs expressing hCx46D3Y in comparison to the cell pairs expressing hCx46wt. In Xenopus oocytes, two-electrode voltage-clamp experiments revealed that hCx46wt formed voltage-sensitive hemichannels. This was not observed in the oocytes expressing hCx46D3Y. The replacement of the aspartic acid residue at the third position by another negatively charged residue, glutamic acid, to generate the mutant hCx46D3E, restored the voltage sensitivity of the resultant hemichannels. Moreover, HeLa cell pairs expressing hCx46D3E and hCx46wt showed a similar degree of dye coupling. These results indicate that the negatively charged aspartic acid residue at the third position of the N-terminus of hCx46 could be involved in the determination of the degree of metabolite cell-to-cell coupling and is essential for the voltage sensitivity of the hCx46 hemichannels.
Biochimica et Biophysica Acta | 2016
Patrik Schadzek; Barbara Schlingmann; Frank Schaarschmidt; Julia Lindner; Michael Koval; Alexander Heisterkamp; Matthias Preller; Anaclet Ngezahayo
The mutation N188T in human connexin46 (hCx46) correlates with a congenital nuclear pulverulent cataract. This mutation is in the second extracellular loop, a domain involved in docking of gap junction hemichannels. To analyze the functional consequences of this mutation, we expressed hCx46N188T and the wild type (hCx46wt) in Xenopus oocytes and HeLa cells. In Xenopus oocytes, hemichannels formed by hCx46wt and hCx46N188T had similar electrical properties. Additionally, a Ca(2+) and La(3+) sensitive current was observed in HeLa cells expressing eGFP-labeled hCx46wt or eGFP-labeled hCx46N188T. These results suggest that the N188T mutation did not alter apparent expression and the membrane targeting of the protein. Cells expressing hCx46wt-eGFP formed gap junction plaques, but plaques formed by hCx46N188T were extremely rare. A reduced plaque formation was also found in cells cotransfected with hCx46N188T-eGFP and mCherry-labeled hCx46wt as well as in cocultured cells expressing hCx46N188T-eGFP and hCx46wt-mCherry. Dye transfer experiments in cells expressing hCx46N188T revealed a lower transfer rate than cells expressing hCx46wt. We postulate that the N188T mutation affects intercellular connexon docking. This hypothesis is supported by molecular modeling of hCx46 using the crystal structure of hCx26 as a template. The model indicated that N188 is important for hemichannel docking through formation of hydrogen bonds with the residues R180, T189 and D191 of the opposing hCx46. The results suggest that the N188T mutation hinders the docking of the connexons to form gap junction channels. Moreover, the finding that a glutamine substitution (hCx46N188Q) could not rescue the docking emphasizes the specific role of N188.
Journal of Bioenergetics and Biomembranes | 2013
Barbara Schlingmann; Patrik Schadzek; Franziska Hemmerling; Frank Schaarschmidt; Alexander Heisterkamp; Anaclet Ngezahayo
The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx4628.2, truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx4637.7, truncated after A333 formed gap junction hemichannels similarly to rCx46wt. To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx4635.3) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46wt. With a truncation after P284 (rCx4632.6), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx4635.3. rCx4628.2 did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx4632.6 and rCx4635.3 revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx4635.3) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx4632.6) is sufficient for the formation of dye coupled gap junction channels.
PLOS Pathogens | 2018
Barbara Schlingmann; Katelyn R. Castiglia; Christopher C. Stobart; Martin L. Moore
Vaccines are the most efficient tools to battle infectious diseases, with an estimated prevention of 2–3 million deaths per year [1]. Vaccine development, however, is costly and challenging, especially when the target pathogen can be subdivided into serologically distinguishable types (serotypes) that individually cause disease. Broad protection against serotypes can be achieved with either polyvalent vaccines of mixed serotype-specific immunogens or by discovery and use of a good immunogen conserved among serotypes. The latter is preferable but technically elusive. The poliovirus vaccine (containing three poliovirus serotypes) was first used as a polyvalent vaccine, beginning with the establishment of the Global Polio Eradication Initiative in 1988, reducing poliomyelitis by 99% [2]. Polyvalency has been arguably more useful than using conserved immunogens to target multiple serotypes, and polyvalency has steadily advanced despite complexity and barriers to manufacturing. Here, we review challenges and developments in polyvalent vaccines.
Data in Brief | 2016
Patrik Schadzek; Barbara Schlingmann; Frank Schaarschmidt; Julia Lindner; Michael Koval; Alexander Heisterkamp; Anaclet Ngezahayo; Matthias Preller
The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5–7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled “The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels” (Schadzek et al., 2015) [1].