Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Moss is active.

Publication


Featured researches published by Benjamin Moss.


high performance interconnects | 2008

Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics

Christopher Batten; Ajay Joshi; Jason S. Orcutt; Anatoly Khilo; Benjamin Moss; Charles W. Holzwarth; Miloš A. Popović; Hanqing Li; Henry I. Smith; Judy L. Hoyt; Franz X. Kärtner; Rajeev J. Ram; Vladimir Stojanovic; Krste Asanovic

We present a new monolithic silicon photonics technology suited for integration with standard bulk CMOS processes, which reduces costs and improves opto-electrical coupling compared to previous approaches. Our technology supports dense wavelength-division multiplexing with dozens of wavelengths per waveguide. Simulation and experimental results reveal an order of magnitude better energy-efficiency than electrical links in the same technology generation. Exploiting key features of our photonics technology, we have developed a processor-memory network architecture for future manycore systems based on an opto-electrical global crossbar. We illustrate the advantages of the proposed network architecture using analytical models and simulations with synthetic traffic patterns. For a power-constrained system with 256 cores connected to 16 DRAM modules using an opto-electrical crossbar, aggregate network throughput can be improved by ap8-10times compared to an optimized purely electrical network.


Optics Express | 2012

Open foundry platform for high-performance electronic-photonic integration

Jason S. Orcutt; Benjamin Moss; Chen Sun; Jonathan Leu; Michael Georgas; Jeffrey M. Shainline; Eugen Zgraggen; Hanqing Li; Jie Sun; Matthew Weaver; Stevan Urosevic; Miloš A. Popović; Rajeev J. Ram; Vladimir Stojanovic

This paper presents photonic devices with 3 dB/cm waveguide loss fabricated in an existing commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes the photonic devices are monolithically integrated with electronics in the same physical device layer as transistors achieving 4 ps logic stage delay, without degradation in transistor performance. We demonstrate an 8-channel optical microring-resonator filter bank and optical modulators, both controlled by integrated digital circuits. By developing a device design methodology that requires zero process infrastructure changes, a widely available platform for high-performance photonic-electronic integrated circuits is enabled.


international symposium on microarchitecture | 2009

Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics

Christopher Batten; Ajay Joshi; Jason S. Orcutt; Anatol Khilo; Benjamin Moss; Charles W. Holzwarth; Miloš A. Popović; Hanqing Li; Henry I. Smith; Judy L. Hoyt; Franz X. Kärtner; Rajeev J. Ram; Vladimir Stojanovic; Krste Asanovic

Silicon photonics is a promising technology for addressing memory bandwidth limitations in future many-core processors. This article first introduces a new monolithic silicon-photonic technology, which uses a standard bulk CMOS process to reduce costs and improve energy efficiency, and then explores the logical and physical implications of leveraging this technology in processor-to-memory networks.


custom integrated circuits conference | 2011

Addressing link-level design tradeoffs for integrated photonic interconnects

Michael Georgas; Jonathan Leu; Benjamin Moss; Chen Sun; Vladimir Stojanovic

Integrated photonic interconnects have emerged recently as a potential solution for relieving on-chip and chip-to-chip bandwidth bottlenecks for next-generation many-core processors. To help bridge the gap between device and circuit/system designers, and aid in understanding of inherent photonic link tradeoffs, we present a set of link component models for performing interconnect design-space exploration connected to the underlying device and circuit technology. To compensate for process and thermal-induced ring resonator mismatches, we take advantage of device and circuit characteristics to propose an efficient ring tuning solution. Finally, we perform optimization of a wavelength-division-multiplexed link, demonstrating the link-level interactions between components in achieving the optimal degree of parallelism and energy-efficiency.


conference on lasers and electro optics | 2008

Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process

Jason S. Orcutt; Anatol Khilo; Miloš A. Popović; Charles W. Holzwarth; Benjamin Moss; Hanqing Li; Marcus S. Dahlem; Thomas D. Bonifield; Franz X. Kärtner; Erich P. Ippen; Judy L. Hoyt; Rajeev J. Ram; Vladimir Stojanovic

We demonstrate the first photonic chip designed in a commercial bulk CMOS process (65 nm node) using standard process layers combined with scalable post-processing, enabling dense photonic integration with high-performance microprocessor electronics.


IEEE Journal of Solid-state Circuits | 2015

A Monolithically-Integrated Chip-to-Chip Optical Link in Bulk CMOS

Chen Sun; Michael Georgas; Jason S. Orcutt; Benjamin Moss; Yu-Hsin Chen; Jeffrey M. Shainline; Mark T. Wade; Karan K. Mehta; Kareem Nammari; Erman Timurdogan; Daniel L. Miller; Ofer Tehar-Zahav; Zvi Sternberg; Jonathan Leu; Johanna Chong; Reha Bafrali; Gurtej S. Sandhu; Michael R. Watts; Roy Meade; Miloš A. Popović; Rajeev J. Ram; Vladimir Stojanovic

Silicon-photonics is an emerging technology that can overcome the tradeoffs faced by traditional electrical I/O. Due to ballooning development costs for advanced CMOS nodes, however, widespread adoption necessitates seamless photonics integration into mainstream processes, with as few process changes as possible. In this work, we demonstrate a silicon-photonic link with optical devices and electronics integrated on the same chip in a 0.18 µm bulk CMOS memory periphery process. To enable waveguides and optics in process-native polysilicon, we introduce deep-trench isolation, placed underneath to prevent optical mode leakage into the bulk silicon substrate, and implant-amorphization to reduce polysilicon loss. A resonant defect-trap photodetector using polysilicon eliminates need for germanium integration and completes the fully polysilicon-based photonics platform. Transceiver circuits take advantage of photonic device integration, achieving 350 fJ/b transmit and 71 µA pp BER = 10 -12 receiver sensitivity at 5 Gb/s. We show high fabrication uniformity and high-Q resonators, enabling dense wavelength-division multiplexing with 9-wavelength 45 Gb/s transmit/receive data-rates per waveguide/fiber. To combat perturbations to variation- and thermally-sensitive resonant devices, we demonstrate an on-chip thermal tuning feedback loop that locks the resonance to the laser wavelength. A 5 m optical chip-to-chip link achieves 5 Gb/s while consuming 3 pJ/b and 12 pJ/bit of circuit and optical energy, respectively.


Optics Letters | 2013

Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.

Jeffrey M. Shainline; Jason S. Orcutt; Mark T. Wade; Kareem Nammari; Benjamin Moss; Michael Georgas; Chen Sun; Rajeev J. Ram; Vladimir Stojanovic; Miloš A. Popović

We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.


IEEE Journal of Solid-state Circuits | 2016

A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning

Chen Sun; Mark T. Wade; Michael Georgas; Sen Lin; Luca Alloatti; Benjamin Moss; Rajesh Kumar; Amir H. Atabaki; Fabio Pavanello; Jeffrey M. Shainline; Jason S. Orcutt; Rajeev J. Ram; Miloš A. Popović; Vladimir Stojanovic

The microring resonator is critical for dense wavelength division multiplexed (DWDM) chip-to-chip optical I/O, enabling modulation and channel selection at the μm-scale suitable for a VLSI chip. Microring-based links, however, require active tuning to counteract process and thermo-optic variations. Here, we present a bit-statistical tuner that decouples tracking of optical one and zero-levels to realize non-dc-balanced data transmission, an “eye-max”-locking controller, and self-heating cancellation without need for a high-speed sensing frontend. We implement the tuner on a 45 nm CMOS-SOI process with monolithically integrated photonic devices and circuits. The tuner consumes 0.74 mW in the logic while achieving a record 524 GHz (> 50 K temperature) tuning range at 3.8 μW/GHz heater efficiency. To our knowledge, this is the highest range and heater efficiency reported by an on-chip closed-loop thermal tuner to date. The tuner integrates with a 5 Gb/s 30 fJ/bit monolithic microring transmitter, achieving wavelength-lock and immunity to both tracking failures and self-heating events caused by arbitrary, nondc-balanced bitstreams. In addition, the tuner provides critical functionality for an 11-λ DWDM transmitter macro capable of 11 × 8 Gb/s bandwidth on a fiber. Together with the transmitter, a 10 Gb/s on-chip monolithic optical receiver with 10-12 BER sensitivity of 9 μA at 10 Gb/s enables a sub-pJ/bit 5 Gb/s optical chip-to-chip link, with the bit-statistical tuner providing thermally robust microring operation.


symposium on vlsi circuits | 2014

A monolithically-integrated optical transmitter and receiver in a zero-change 45nm SOI process

Michael Georgas; Benjamin Moss; Chen Sun; Jeffrey M. Shainline; Jason S. Orcutt; Mark T. Wade; Yu-Hsin Chen; Kareem Nammari; Jonathan Leu; Aravind Srinivasan; Rajeev J. Ram; Miloš A. Popović; Vladimir Stojanovic

An optical transmitter and receiver with monolithically-integrated photonic devices and circuits are demonstrated together for the first time in a commercial 45nm SOI process, without any process changes. The transmitter features an interleaved-junction carrier-depletion ring modulator and operates at 3.5Gb/s with an 8dB extinction ratio and combined circuit and device energy cost of 70fJ/bit. The optical receiver connects to an integrated SiGe detector designed for 1180nm wavelength and performs at 2.5Gb/s with 15μA sensitivity and energy cost of 220fJ/bit.


international solid-state circuits conference | 2013

A 1.23pJ/b 2.5Gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI

Benjamin Moss; Chen Sun; Michael Georgas; Jeffrey M. Shainline; Jason S. Orcutt; Jonathan Leu; Mark T. Wade; Yu-Hsin Chen; Kareem Nammari; Xiaoxi Wang; Hanqing Li; Rajeev J. Ram; Miloš A. Popović; Vladimir Stojanovic

Integrated photonic interconnect technology presents a disruptive alternative to electrical I/O for many VLSI applications. Superior bandwidth-density and energy-efficient operation can be realized through dense wavelength-division multiplexing (DWDM) and lower transmission losses. There are two main paths towards an integrated platform. Hybrid/heterogeneous designs [1-3] enable each component to be custom-tailored, but suffer from large packaging parasitics, increased manufacturing costs due to requisite process flows, and costly 3D integration or microbump packaging. Monolithic integration mitigates integration overheads, but has not penetrated deeply-scaled technologies due to necessary process customizations [4]. The first monolithic integration of photonic devices and electronic-photonic operation in sub-100 nm (45 nm SOI process with zero foundry changes) is demonstrated in [5]. This paper presents a monolithically integrated optical modulator with a new all-digital driver circuit in a commercial 45nm SOI process. The waveform-conditioning driver circuit enables the carrier-injection modulator to operate at 2.5Gb/s with an energy-cost of 1.23pJ/b, making it ~4× faster and more energy-efficient than the previous monolithically integrated driver/modulator presented in [5].

Collaboration


Dive into the Benjamin Moss's collaboration.

Top Co-Authors

Avatar

Vladimir Stojanovic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rajeev J. Ram

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jason S. Orcutt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Sun

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Georgas

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Shainline

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan Leu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark T. Wade

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Hanqing Li

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge